MECE336 Microprocessors I
Interrupts

Dr. Kurtulus Erinc Akdogan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

¢7-Ry CANKAYA UNIVERSITESI
>’/ MEKATRONIK MUHENDISLIGI BOLUMU

mailto:kurtuluserinc@cankaya.edu.tr

Working With Time: Interrupts

[0 Our daily lives are ruled by time
B alarm clocks to wake us

[0 Embedded systems, needs to respond in a
timely manner to external events.

[0 These requirements are met primarily by
feature of a microcontroller: the interrupt

[0 Interrupts form part of the exciting
techniques that underpin real-time
programming

The Main Idea - Interrupts

Up to Now

O
|

Programs are written in a precise and predictable fashion

Instructions are followed in a clear order and the update of the
program counter is well-defined at each step of the program

Interrupt Idea

O

|
O

Function of an interrupt is to alert the CPU that some significant
event such as power failure, the system overheating, has happened

Interrupt can occur at any time

Effect of an interrupt is generally to stop the CPU from doing its
current task and to force it to respond to the interrupt cause

Interrupt disturbs predictable execution of a program
There can be different interrupt sources on a microcontroller

OO0

Interrupt structures

Microcontrollers have more than one interrupt source generated
| internally and
u externally.

Assume ‘Interrupt X’ occurs, sets an S—R bistable and its occurrence is recorded.
The output of the is called the ‘interrupt flag’.

This is then gated with an enable signal, ‘Interrupt X Enable’.
Other
Replicated for all other maskable interrupts maskable Global Interrupt Enable*

/ interrupts |_
D—

I Interrupt X Enable* i
i :
1 I
) |
i Interrupt X s o J i Interrupt
i :
| 1
I 1
I |
] I
| 1
I 1
1

L~

Inputs to
~ CPU
(Reset by CPU | R — Interrupt
or program) flag*

Non-maskable

O
interrupt J
* bits in a Special Function Register

O

O0a0an

Interrupt structures

If enable is high, then the interrupt signal progresses to an OR gate with other maskable
enabled interrupt inputs.

Any interrupt signal can reach the CPU as long as 'Global Interrupt Enable’ is enabled.
When the CPU has responded to an interrupt, it is necessary to clear the interrupt flag.
The action of disabling an interrupt is sometimes called ‘masking’.

There are unmaskable which are always external and of the greatest importance

Other
Replicated for all other maskable interrupts maskable Global Interrupt Enable*

/ interrupts L
D—

Interrupt X Enable* :

i

|

|

Interrupt X !

rup s q _/ i Interrupt

l

1

1

1

1

1

1

1

L~

iInputs to
~ CPU
i (Reset by CPU [R — Interrupt
lor program) flag*

Non-maskable

O
interrupt J
* bits in a Special Function Register

The 16F84A Interrupt Structure

External Interrupt

O This is the only external hardware interrupt input on PIC16F84A.
It shares a pin with Port B, bit O (pin RBO). It is edge triggered.

Timer Overflow

0 This is an interrupt caused by the Timer0O module. It occurs when the
timers 8-bit counter overflows. This the software interrupt or
internal interrupt.

Port B interrupt on change

[0 This interrupt occurs when a change is detected on any of the higher
four bits of Port B (RB4,RB5,RB6, and RB7).

EEPROM write complete

O This interrupt occurs when a write instruction to the EEPROM
memory is completed (see later lectures).

O 0O O

Interrupt Logic

The four interrupt sources appear labelled on the left of diagram.

Each source has an enable line (E) and a flag line (F).
The INTCON register contains the enable bits for all interrupt

SOources.

Timer Overflow Flag

Timer Overflow

HTUI F

Interrupt Enable | *TOIE

External Interrupt

INTF
INTE

Port B Change

{HBIF
RBIE

EEPROM Write
Complete

{EEIF
EEIE

Global Interrupt
Enable

_~GIE

Wake-up
(if in Sleep mode)

}
—
D=

DTerrupt to CPU

INTCON REGISTER

(ADDRESS 0Bh, 8Bh)

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit0

REGISTER FILE MAP -
PIC16F84A

RWO RWO RWO RWD RW-0 RWO RWO RWx
| GE | EEIE | TOE | INTE | RBE | TOF | INTF | RBIF |
bit 7 bit 0

GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

0 = Disables all interrupts

EEIE: EE Write Complete Interrupt Enable bit

1 = Enables the EE Write Complete interrupts
0 = Disables the EE Write Complete interrupt

TOIE: TMRO Overflow Interrupt Enable bit

1 = Enables the TMRO interrupt

0 = Disables the TMRO interrupt

INTE: RBO/INT External Interrupt Enable bit
1 = Enables the RBO/INT external interrupt

0 = Disables the RBO/INT external interrupt
RBIE: RB Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt
o = Disables the RB port change interrupt

TOIF: TMRO Overflow Interrupt Flag bit

1 = TMRO register has overflowed (must be cleared in software)
0 = TMRO register did not overflow

INTF: RBO/INT External Interrupt Flag bit

1 = The RBO/INT external interrupt occurred (must be cleared in software)
0 = The RBO/INT external interrupt did not occur

RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
o0 = None of the RB7:RB4 pins have changed state

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
-n=Value at POR 1" = Bitis set " = Bitis cleared X = Bit is unknown

File Address File Address
00h | Indirect addr‘" | Indirect addr." | soh
01h TMRO OPTION _REG | 81h
02h PCL PCL 82h
03h STATUS STATUS 83h
04h FSR FSR 84h
05h PORTA TRISA 85h
06h PORTB TRISB 86h
07h = = 87h
08h EEDATA EECON/ 88h
09h EEADR EECON2! 89h
DAh PCLATH PCLATH 8Ah
0Bh INTCON INTCON 8Bh
0Ch &Ch

E8

General Mapped

Purpose (accesses)

Registers in Bank 0

(SRAM)
4Fh CFh
50h DOh
7Fh w FFh

Bank 0 Bank 1

[1 Unimplemented data memory location, read as '0".

Note 1:

Mot a physical register.

The CPU Response To An Interrupt

Assume that an interrupt has occurred, and
both its local and the global enable are set.

CPU executes a special section of program
called the Interrupt Service Routine (ISR).

CPU saves the value of the Program Counter
on the top of the Stack to ‘know’ where to
come back to when the ISR is complete.

To avoid other interrupts possibly
interrupting this interrupt, it also clears the
Global Interrupt Enable.

Program Counter is loaded with memory
location 0004 as ISR must start at here.

ISR must end with retfie instruction.

When this is detected, the CPU sets the GIE
to 1, loads the Program Counter from the
top of the Stack and then resumes program
execution.

Thus, it returns to the instruction which
follows the instruction during which the

interrupt was detected.

Interrupt detected

-

Complete current instruction

-

Save Program Counter on Stack

E

Clear GIE

v

Reload PC with 0004,

v

Y

Continue program execution

Instruction
Is RETFIE?

Set GIEto 1

¥

Load PC from Stack

v

Continue program execution

Main program is running

ISR execution starts

NMain program continues

Programming With
A Single Interrupt

For a succesful interrupt application

O
O

O00a0

O

Start the ISR at the interrupt vector, location 0004.

Enable the interrupt that is to be used by setting
the enable bit in the INTCON register.

Set the Global Enable bit, GIE.
Clear the interrupt flag within the ISR.
End the ISR with a retfie instruction.

Ensure that the interrupt source, for example Port B
or Timer 0, is actually set up to generate interrupts.

The program starts as usual at the reset vector
0000;

Example Program

O

O

branches over the reset vector to location start,
where initialisation takes place.

Within this we see the GIE and INTE bits being set

The main program simply outputs the bit patterns
OAH and 15H to Port A

When an interrupt occurs the interrupt vector
address is loaded into the Program Counter, from
where program execution continues.

The first action of the ISR is to jump to location Int
Routine. This is placed at program memory location
0080H to give clarity to the simulation.

The ISR simply clears Port A before clearing its
interrupt flag and returning to the main program.

;**********k**k*****************k******k**********k*****
;Int Demol

;This program demonstrates simple interrupts.

;Intended for simulation.

;tijw rev.14.2.09

Tested in simulation 14.9.09

s kok ok ok ok ok k ok ok ok ok ke ko ko ke ke ke ko ki kg kb ko ke ke ke ke ke ke ke ko ke ko ko ke kK ke k k ok kb ok ok
r

r

include pl6f84A.inc

;Port A all output
;Port B: bit 0 = Interrupt Input

r

org 00
goto start
org 04 ;here if interrupt occurs
goto Int Reoutine
org 0010
;Initialise
start bsft status, rp0 ;select bank 1
movlw 01
movwf trisb ;portb bits 1-7 output

;inter

r

; bit 0 is input
movlw 00

movwf trisa ;porta bits all output
;Comment in or out following instruction to change

rupt edge

bcf option reg, intedg

bcf status, rp0 ;select bank 0

bsf intcon, inte ;enable external interrupt

bsf intcon,gie ;enable global int

movlw Oa ;set up initial port output values

walt

r

movwf
nop
movlw 15
movwf porta
goto wait

porta

org 0080

Int Routine

movlw 00

movwf porta

bcf intcon, intf
retfie

end

;clear the interrupt flag

Interrupt Subroutine:
General Idea

The interrupt subroutine is called from the program memory location
0004 using a goto instruction
org 0x04
goto interrupt subroutine

To disable further interrupts during the interrupt subroutine, the
interrupt enable flag should be reset

bcf INTCON,INTE; (for external interrupt)
The interrupt flag should be reset at the end of the subroutine
bcf INTCON,INTF; (for external interrupt)
The content of the W register and STATUS register should be saved
movwf TEMP W;
swapf STATUS,O;
movwf TEMP S;

General Structure For An Assembly Program
With External Interrupt Subroutine

LIST P=16F84A

INCLUDE "P16F84A.INC"

ORG 0X000 ; address of the main program
GOTO START

ORG 0X004 :address of the ISR

GOTO MY_ISR

START
BSF INTCON, GIE ;global interrupt enable
BSF INTCON, INTE ; external interrupt enable
LOOP
GOTO LOOP
MY _ISR

BCF INTCON, INTF ; clear interrupt flag

|||||||||||||||||||||||

RETFIE
END

External interrupts and

OPTION register

For external interrupts,

REGISTER FILE MAP -

O 1. RBO must be input.
0 2. INTE must be 1.
O 3. Bit_6 of the OPTION register (INTEDG) is the
interrupt edge select bit;
RMW-1 R/W-1 RW-1 R/AW-1 RMW-1 RMW-1 R/W-1 R/W-1
| RBPU | INTEDG | TOCS | TOSE | PSA | PS2 | PS1 | PSO |
bit 7 bit 0
O If INTEDG= 1, interrupt occurs rising edge of the
Slgnal Rising
Edge
N
O If INTEDG= 0, interrupt occurs falling edge of the
signal. Falling
Edge
A%
[0 Depends on the hardware, INTEDG must be 0 or 1.

File Address File Address
00h | Indirect addr.!" | Indirect adar.!" | 8oh
01h TMRO OPTION_REG | 81h
02h PCL PCL 82h
03h STATUS STATUS 83h
04h FSR FSR 84h
05h PORTA TRISA 85h
06h PORTB TRISB 86h
07h = = 87h
08h EEDATA EECON1 88h
0%h EEADR EECON2(1 89h
0Ah PCLATH PCLATH 8Ah
0Bh INTCON INTCON 8Bh
0Ch aCh

68

General Mapped

Purpose (accesses)

Registers in Bank 0

(SRAM)
4Fh CFh
50h DOh
7Fh \ FFh

Bank 0

Bank 1

[Unimplemented data memory location, read as '0".
Mot a physical register.

Note 1:

swapf

O swapf f,d: swaps the lower nibble and the higher nibble
of the content in file register f. In other words, the lower
4 bits are put into the higher 4 bits, and the higher 4 bits
are put into the lower 4 bits. Write the result to

B Working register Wifdis O
B File registerfifdis 1

BEFORE: | D7-D4 D3-DO AFTER SWAPF D3-DO D7-D4
BEFORE: J0111 0010 AFTER SWAPF 0010 0111

Example

[0 Find the contents of the MYREG register in the
following code.

Solution
MYREG EQU 0X20
MOVLW 0X72 ;WREG=72
MOVWF MYREG ;MYREG=72
SWAPF MYREG,F ;:MYREG=27

Protect The Contents Of The Working
Register And STATUS Register

Interrupt subroutine should be

written as
ORG h'004’
GOTO MY_ISR

MY _ISR
MOVWEF SAVE_ W ; SAVE_W=W_initiaI
SWAPF STATUS,W W=SWAP STATUS_initiaI
MOVWEF SAVE_S ; SAVE _S=SWAP STATUS_initiaI
SWAPF SAVE_S, W ;W=STATUS
MOVWEF STATUS ;STATUS=STATUS_initiaI
SWAPF SAVE_ W, F ;W=SWAP W_initial
SWAPF SAVE_ W, W ;W=W_initial

RETFIE

Moving To Multiple Interrupts -
Identifying The Source

16F84A has four interrupt
sources but only one interrupt
vector.

Therefore, if more than one
interrupt is enabled, it is not
obvious at the beginning of
an ISR which interrupt has
occurred.

In this case the programmer
must write the ISR so that at
its beginning it tests the flags
of all possible interrupts and
determines from this which
one has been called.

interrupt btfsc intcon,0

goto portb_int
btfsc intcon,1
goto ext int
btfsc intcon, 2
goto timer int
btfsc eeconl, 4
goto eeprom int

portb int
place portb change ISR here

bef intcon, 0
retfie

ext int

;test RBIF
;test external interrupt flag
;test timer overflow flag

;test EEPROM write complete flag

;and clear the interrupt flag

place external interrupt ISR here

bcf intcon, 1
retfie

timer int

;and clear the interrupt flag

place timer overflow ISR goes here

bcf intcon, 2
retfie
eeprom_int

;and clear the interrupt flag

place EEPROM write complete ISR here

becf eeconl, 4
retfie

;and clear the interrupt flag

START

Example:
Multiple Interrupts

LIST P=16F84A
INCLUDE "P16F84A.INC"

ORG

GOTO
ORG

BTFSC
GOTO
BTESC
GOTO
BTESC
GOTO
GOTO

BSF
BSF
BSF
BSF
BSF

GOTO

0X000 ; address of the main program

START

0X004 ;address of the ISR

INTCON,INTF

MY _ISR_RBO_INT
INTCON,RBIF

MY _ISR_RB
INTCON,TOIF

MY _ISR_TO

MY _ISR_EE

INTCON, GIE
INTCON, INTE
INTCON, RBIE
INTCON, TOIE
INTCON, EEIE

LOOP

g

;global interrupt enable

; external interrupt enable
;PORTB_change interrupt enable
; Timer overflow interrupt enable
;eeprom interrupt enable

MY _ISR_RBO_INT
BCF INTCON, INTF
BSF PORTB,1
RETFIE

MY _ISR_RB
BCF INTCON, RBIF
BSF PORTB,2
RETFIE

MY _ISR_TO
BCF INTCON, TOIF
BSF PORTB,3
RETFIE

MY _ISR_EE
BSF PORTB,0
RETFIE
END

; clear interrupt flag

; clear interrupt flag

; clear interrupt flag

NG

_~

Example

LIST P=16F84A

INCLUDE "P16f84A.INC"

__config _CP_OFF&_WDT_OFF&_XT_0OSC

org 0x00;

goto START

org 0x04;

GOTO ISR ; go to interrupt service routine

MAIN_PROG CODE ; let linker place main program

START

BSF STATUS, RPO

CLRF TRISA ;set all PORTA as OUTPUT

MOVLW 0xFO

MOVWF TRISB ;buttons attached to RB4 to RB7

BCF STATUS, RPO ;go to bank 0

MOVLW b'10001000'

MOVWF INTCON ;Global interrupt enabled, RB Change interrupt enabled
GOTO MAIN

yMain routing----=========- - e
MAIN

BSF PORTA,0 ;Set RA.O
GOTO MAIN ;Loop

yInterrupt service routing-------------------ommm oo
ISR

BCF INTCON, GIE ;Disable all interrupts inside interrupt service routine
BCF PORTA,OQ ;clear RA.O

BCF INTCON,RBIF ;Clear external interrupt flag bit

BSF INTCON, GIE ;Enable all interrupts on exit

GOTO MAIN

END

