
MECE336 Microprocessors I
Interrupts

Dr. Kurtuluş Erinç Akdoğan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

mailto:kurtuluserinc@cankaya.edu.tr


Working With Time: Interrupts

 Our daily lives are ruled by time

 alarm clocks to wake us

 Embedded systems, needs to respond in a 
timely manner to external events.

 These requirements are met primarily by 
feature of a microcontroller: the interrupt

 Interrupts form part of the exciting 
techniques that underpin real-time 
programming



The Main Idea – Interrupts

Up to Now

 Programs are written in a precise and predictable fashion

 Instructions are followed in a clear order and the update of the
program counter is well-defined at each step of the program

Interrupt Idea

 Function of an interrupt is to alert the CPU that some significant
event such as power failure, the system overheating, has happened

 Interrupt can occur at any time

 Effect of an interrupt is generally to stop the CPU from doing its
current task and to force it to respond to the interrupt cause

 Interrupt disturbs predictable execution of a program

 There can be different interrupt sources on a microcontroller



Interrupt structures
 Microcontrollers have more than one interrupt source generated

 internally and 

 externally.

 Assume ‘Interrupt X’ occurs, sets an S–R bistable and its occurrence is recorded. 

 The output of the is called the ‘interrupt flag’. 

 This is then gated with an enable signal, ‘Interrupt X Enable’. 



Interrupt structures
 If enable is high, then the interrupt signal progresses to an OR gate with other maskable

enabled interrupt inputs.

 Any interrupt signal can reach the CPU as long as ‘Global Interrupt Enable’ is enabled.

 When the CPU has responded to an interrupt, it is necessary to clear the interrupt flag. 

 The action of disabling an interrupt is sometimes called ‘masking’.

 There are unmaskable which are always external and of the greatest importance



The 16F84A Interrupt Structure

External Interrupt

 This is the only external hardware interrupt input on PIC16F84A. 
It shares a pin with Port B, bit 0 (pin RB0). It is edge triggered.

Timer Overflow

 This is an interrupt caused by the Timer0 module. It occurs when the 
timers 8-bit counter overflows. This the software interrupt or
internal interrupt.

Port B interrupt on change

 This interrupt occurs when a change is detected on any of the higher
four bits of Port B (RB4,RB5,RB6, and RB7).

EEPROM write complete

 This interrupt occurs when a write instruction to the EEPROM
memory is completed (see later lectures).



Interrupt Logic

 The four interrupt sources appear labelled on the left of diagram.

 Each source has an enable line (E) and a flag line (F).

 The INTCON register contains the enable bits for all interrupt 
sources.



INTCON REGISTER 
(ADDRESS 0Bh, 8Bh)

REGISTER FILE MAP -

PIC16F84A



The CPU Response To An Interrupt

 Assume that an interrupt has occurred, and 
both its local and the global enable are set. 

 CPU executes a special section of program 
called the Interrupt Service Routine (ISR).

 CPU saves the value of the Program Counter 
on the top of the Stack to ‘know’ where to 
come back to when the ISR is complete. 

 To avoid other interrupts possibly 
interrupting this interrupt, it also clears the 
Global Interrupt Enable.

 Program Counter is loaded with memory 
location 0004 as ISR must start at here.

 ISR must end with retfie instruction. 

 When this is detected, the CPU sets the GIE 
to 1, loads the Program Counter from the 
top of the Stack and then resumes program 
execution. 

 Thus, it returns to the instruction which 
follows the instruction during which the 
interrupt was detected.



Programming With 
A Single Interrupt

For a succesful interrupt application

 Start the ISR at the interrupt vector, location 0004.

 Enable the interrupt that is to be used by setting 
the enable bit in the INTCON register.

 Set the Global Enable bit, GIE.

 Clear the interrupt flag within the ISR.

 End the ISR with a retfie instruction.

 Ensure that the interrupt source, for example Port B 
or Timer 0, is actually set up to generate interrupts.

 The program starts as usual at the reset vector
0000;

Example Program

 branches over the reset vector to location start, 
where initialisation takes place.

 Within this we see the GIE and INTE bits being set

 The main program simply outputs the bit patterns 
0AH and 15H to Port A

 When an interrupt occurs the interrupt vector 
address is loaded into the Program Counter, from
where program execution continues. 

 The first action of the ISR is to jump to location Int
Routine. This is placed at program memory location 
0080H to give clarity to the simulation.

 The ISR simply clears Port A before clearing its 
interrupt flag and returning to the main program.



Interrupt Subroutine: 
General Idea

 The interrupt subroutine is called from the program memory location

0004 using a goto instruction

org 0x04

goto interrupt subroutine

 To disable further interrupts during the interrupt subroutine, the
interrupt enable flag should be reset

bcf INTCON,INTE; (for external interrupt)

 The interrupt flag should be reset at the end of the subroutine

bcf INTCON,INTF; (for external interrupt)

 The content of the W register and STATUS register should be saved

movwf TEMP W;

swapf STATUS,0;

movwf TEMP S;



General Structure For An Assembly Program 
With External Interrupt Subroutine



REGISTER FILE MAP -

PIC16F84AExternal interrupts and 
OPTION register

For external interrupts,

 1. RB0 must be input.

 2. INTE must be 1.

 3. Bit_6 of the OPTION register (INTEDG) is the 
interrupt edge select bit;

 If INTEDG= 1, interrupt occurs rising edge of the 
signal.

 If INTEDG= 0, interrupt occurs falling edge of the 
signal.

 Depends on the hardware, INTEDG must be 0 or 1.



swapf

 swapf f,d: swaps the lower nibble and the higher nibble
of the content in file register f. In other words, the lower 
4 bits are put into the higher 4 bits, and the higher 4 bits 
are put into the lower 4 bits. Write the result to

 Working register W if d is 0

 File register f if d is 1



Example

 Find the contents of the MYREG register in the 
following code. 

Solution

MYREG EQU 0X20

MOVLW 0X72 ;WREG=72

MOVWF MYREG ;MYREG=72

SWAPF MYREG,F ;MYREG=27



Protect The Contents Of The Working
Register And STATUS Register

 Interrupt subroutine should be 
written as



Moving To Multiple Interrupts –
Identifying The Source

 16F84A has four interrupt 
sources but only one interrupt 
vector.

 Therefore, if more than one 
interrupt is enabled, it is not 
obvious at the beginning of 
an ISR which interrupt has 
occurred. 

 In this case the programmer 
must write the ISR so that at 
its beginning it tests the flags 
of all possible interrupts and 
determines from this which 
one has been called.



Example:

Multiple Interrupts 



Example

LIST P=16F84A
INCLUDE "P16f84A.INC"
__config _CP_OFF&_WDT_OFF&_XT_OSC
org 0x00;
goto START
org 0x04;
GOTO ISR ; go to interrupt service routine

MAIN_PROG CODE ; let linker place main program

START
BSF STATUS, RP0
CLRF TRISA ;set all PORTA as OUTPUT
MOVLW 0xF0
MOVWF TRISB ;buttons attached to RB4 to RB7
BCF STATUS, RP0 ;go to bank 0
MOVLW b'10001000'
MOVWF INTCON ;Global interrupt enabled, RB Change interrupt enabled
GOTO MAIN

;Main routine---------------------------------------------------------------------
MAIN

BSF PORTA,0 ;Set RA.0
GOTO MAIN ;Loop

;Interrupt service routine--------------------------------------------------------
ISR 

BCF INTCON, GIE ;Disable all interrupts inside interrupt service routine
BCF PORTA,0 ;clear RA.0
BCF INTCON,RBIF ;Clear external interrupt flag bit
BSF INTCON, GIE ;Enable all interrupts on exit
GOTO MAIN

END


