
MECE336 Microprocessors I
Timer/Counter

Dr. Kurtuluş Erinç Akdoğan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

mailto:kurtuluserinc@cankaya.edu.tr


PIC16F84 TIMER PROGRAMMING
 The PIC16F84 has two timers depending on the family member. 

 Timer 0

 Watchdog timer (WDT). 

 They can be used either as timers to generate a time delay or as 
counters to count events happening outside the microcontroller.

 Every timer needs a clock pulse to tick. The clock source can be 
internal or external. 

 If we use the internal clock source, then 1/4th of the frequency of 
the crystal oscillator on the OSC1 (Fosc/4) pin is fed into the 
timer. Therefore it is used for time delay generation and for that 
reason is called a timer.

 By choosing the external clock option, we feed pulses through 
one of the PIC16’s pins: this is called a counter.



TMR0

 TMR0 is an 8-bit special function register 
in the RAM. It has the following features;

 Timer0 can operate as a 8-bit timer or as 
a 8-bit counter.

 Readable and writable

 Timer 0 is configurable, controlled by a 
number of bits that appear in the OPTION 
register.

 Internal or external clock can be selected

 Edge can be selected for external clock 
(rising or falling edge)

 8-bit software programmable prescaler

 Interrupt occurs when TMR0 counts from 
h’FF’ to h’00’ (Timer overflow interrupt)

REGISTER FILE MAP -

PIC16F84A



 T0CS controls the sources of the clock input to the TMR0 counter
whether RA4 pin or internal instruction cycle frequency, labelled Fosc/4. 

 Timer mode is selected by clearing bit T0CS (OPTION_REG<5>). In 
Timer mode, the Timer0 module will increment every instruction cycle.

 Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In 
Counter mode, Timer0 will increment, either on every rising or falling 
edge of pin RA4/T0CKI. 

 The incrementing edge is determined by the Timer0 Source Edge 
Select bit, T0SE (OPTION_REG<4>). Clearing bit T0SE selects the 
rising edge.

TIMER0 BLOCK DIAGRAM

OPTION register



 The output of the first multiplexer branches before reaching a second multiplexer. 
This selects either a direct path or the path taken through a programmable 
prescaler. 

 The choice is controlled by bit PSA of the Option register. If PSA is set to 0, then 
the prescaler is assigned to the Timer 0. 

 The prescaler itself is controlled by bits PS2, PS1 and PS0 of the Option register. 
They allow a choice of frequency divisions of the incoming clock signal.

 The output of the second multiplexer is synchronised with the internal clock, 
before becoming the input to the actual counter.

 When the counter overflows, it sets the timer overflow flag, one of the PIC 
microcontroller’s four interrupt sources.

TIMER0 BLOCK DIAGRAM

OPTION register



OPTION REGISTER (ADDRESS 81h)

-The PSA and PS2:PS0 bits 
(OPTION_REG<3:0>)
determine the prescaler
assignment and prescale
ratio.

-Clearing bit PSA will assign 
the prescaler to the Timer0
module. 

-When the prescaler is 
assigned to the Timer0
module, prescale values of 
1:2, 1:4, ..., 1:256 are
selectable.

-If TMR0=1/2, TMR0 
increases every 2 instruction 
cycle. If TMR0=1/128, TMR0 
increases every 128 
instruction cycle.



Example

 If prescaler value is b’000’, what is the increment period of TMR0 
and maximum interrupt delay? (Oscillator frequency 4 MHz)

SOLUTION

 internal frequency=4MHz/4=1MHz

 ICT (Instruction cycle time)=1/1MHz=1us

 Prescaler value=000, TMR0_rate=1/2

 IP(Increment period)=2x1μs=2μs

 Timer overflow Interrupt occurs when TMR0 counts from h’FF’ to 
h’00’. There are 256 numbers between h’00’ to h’FF’ for 
maximum interrupt delay.

 ID(Interrupt delay)=IPx256=2usx256=512us



Example: 
Use Timer 0 as a counter

- For an electronic ping-pong circuit, 
right paddle is used as the counter 
input, continuously displaying the 
current value on the LEDs connected 
to Port B.

- To configure Timer 0, we’ll need to 
select its external input, i.e. 
T0CS=1. 

- Due to less likelihood of bounce, 
rising edge (switch release) is 
selected for input by setting
T0SE=0. 

- Exact number of switch presses will
be counted so by setting PSA=1, 
WatchDog Timer (WDT) will be 
able to use prescaler. Hence the 
values of PS2, PS1 and PS0 do not 
matter.

- Rest of the bits of Option register
are set to 0 since they don’t matter. 

-A final value for the Option register 
setting is thus 00101000B.



Hardware-generated delays
 We have used software-generated delays to time how long the

LEDs are to be illuminated. 

 This is only acceptable in simple programs, as in software-
generated delays the CPU is doing nothing useful during the whole of 
the delay. 

 Now that we have a counter/timer at our disposal, we can use it to 
generate the delay and let CPU be free.

 This seems quite simple, but a small problem presents itself: how do 
we know when the delay period is up? 

 If we have to keep checking the timer value, then we will have made 
little progress. This is where the ‘interrupt on overflow’ comes into 
its own. 

 If things are set up so that an interrupt is generated as the delay 
ends, then we have a powerful means of creating efficient delays.



Hardware-generated delays
 As a first step, let’s replace the 5 ms software delay subroutine with a delay controlled by 

Timer 0. 

 The internal clock is approximately 800 kHz and the instruction cycle rate (Fosc/4) is 
therefore 200 kHz, or a period of 5 μs. 

 Now with this clock frequency, Timer 0 would count up to its maximum value (255) in 
255x5μs, or 1275μs, and would overflow on the next cycle, i.e. after 1280μs.

 We can, however, make use of the prescaler here. If the incoming signal is divided by 4 (i.e. 
PS2, PS1, PS0 set to 001), then Timer 0 will overflow after 256x4x5 μs, or 5.120μs. This is 
very close to the 5 ms we’re looking for, but it’s not quite exact.

 Although the ping-pong program does not need accurate timing, suppose we genuinely 
needed a delay very close to 5 ms? 

 Let us divide the incoming clock by 8 instead of 4, which gives a divided frequency of 25 kHz, 
or a period of 40 μs. 

 Now 125 Timer 0 input cycles will cause a delay of 40x125μs, or 5.00 ms, which is exactly our 
target. 

 If we arrange for this prescaling, and at the start of each delay pre-load Timer 0 with 256-
125=131, then an exact delay, terminated by the interrupt on overflow, is possible.



Example

 Write a code that produces 5ms delay 
using timer module and interrupt to 
switch on a LED connected to PORTB.



00000010 value in OPTION REGISTER 

-The PSA and PS2:PS0 bits 
(OPTION_REG<3:0>)
determine the prescaler
assignment and prescale
ratio.

-Clearing bit PSA will assign 
the prescaler to the Timer0
module. 

-When the prescaler is 
assigned to the Timer0
module, prescale values of 
1:2, 1:4, ..., 1:256 are
selectable.

-If TMR0=1/2, TMR0 
increases every 2 instruction 
cycle. If TMR0=1/128, TMR0 
increases every 128 
instruction cycle.



INTCON REGISTER 
(ADDRESS 0Bh, 8Bh)

REGISTER FILE MAP -

PIC16F84A



Example
- This includes both the 
initialization section and the 
revised delay subroutine.

- Interrupts are not enabled and 
the subroutine determines when 
the delay is complete by testing 
the overflow interrupt flag. 

- The advantage to the 
programmer is that timing is 
now achieved by manipulating
the Timer 0 settings, rather than 
by adjusting the software 
routine. 

- The ‘interrupt on overflow’ has 
not been enabled, as it would in 
this instance offer little 
advantage.

- In a more demanding 
program, however, the interrupt 
could be enabled and the time 
spent in the delay used to 
undertake other CPU activities.



Example

 Explain what the 
program does.

 Modify the 
program such that
 the timer starts 

counting from 253 
after the interrupt 
subroutine

 the prescaler with 
rate 1 : 2 is used.



Example

 To generate 1.28ms interrupt delay, what will be the first number 
of the TMR0.(Fosc=4MHz, Prescaler=110)

SOLUTION

 Internal frequency=4MHz/4=1MHz

 ICT (Instruction cycle time)=1/1MHz=1μs

 For 1.28ms ID, 1.28ms/1 μs=1280 instruction.

 Prescaler=110; TMR0 increases every 128 instruction cycle. 
1280 /128=10 ,

 To create 1.28ms interrupt delay, TMR0 should count 10 number.

 Timer overflow Interrupt occurs when TMR0 count from h’FF’ to 
h’00’. 256-10=246;First number of the TMR0=246.



Example

 Assume that the oscillator frequency is 4Mhz. 
Configure the Timer 0 such that an interrupt 
occurs after approximately 65.5msec.

 Write a program that

 increments PORTB every 65.5msec

 clears PORTB and TMR0 if the button at pin RA2 is 
pressed.


