MECE336 Microprocessors I **Timer/Counter**

Dr. Kurtuluş Erinç Akdoğan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

ÇANKAYA ÜNİVERSİTESİ MEKATRONİK MÜHENDİSLİĞİ BÖLÜMÜ

PIC16F84 TIMER PROGRAMMING

- □ The PIC16F84 has two timers depending on the family member.
 - Timer 0
 - Watchdog timer (WDT).
- They can be used either as timers to generate a time delay or as counters to count events happening outside the microcontroller.
- Every timer needs a clock pulse to tick. The clock source can be internal or external.
- If we use the internal clock source, then 1/4th of the frequency of the crystal oscillator on the OSC1 (Fosc/4) pin is fed into the timer. Therefore it is used for time delay generation and for that reason is called a timer.
- By choosing the external clock option, we feed pulses through one of the PIC16's pins: this is called a counter.

TMR0

- TMR0 is an 8-bit special function register in the RAM. It has the following features;
- Timer0 can operate as a 8-bit timer or as a 8-bit counter.
- Readable and writable
- Timer 0 is configurable, controlled by a number of bits that appear in the OPTION register.
- Internal or external clock can be selected
- Edge can be selected for external clock (rising or falling edge)
- 8-bit software programmable prescaler
- Interrupt occurs when TMR0 counts from h'FF' to h'00' (Timer overflow interrupt)

File Addre	SS	F	ile Address						
00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h						
01h		OPTION_REG	81h						
02h	PCL	PCL	82h						
03h	STATUS	STATUS	83h						
04h	FSR	FSR	84h						
05h	PORTA	TRISA	85h						
06h	PORTB	TRISB	86h						
07h	-	_	87h						
08h	EEDATA	EECON1	88h						
09h	EEADR	EECON2 ⁽¹⁾	89h						
0Ah	PCLATH	PCLATH	8Ah						
0Bh	INTCON	INTCON	8Bh						
	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0							
4Fh 50h			CFh D0h						
7Fh			FFh						
	Bank 0	Bank 1							
 Unimplemented data memory location, read as '0'. Note 1: Not a physical register. 									

REGISTER FILE MAP -

Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION_REG<5:0>).

2: The prescaler is shared with Watchdog Timer (refer to Figure 5-2 for detailed block diagram).

- TOCS controls the sources of the clock input to the TMRO counter whether RA4 pin or internal instruction cycle frequency, labelled Fosc/4.
- □ Timer mode is selected by clearing bit **TOCS** (**OPTION_REG**<5>). In Timer mode, the Timer0 module will increment every instruction cycle.
- Counter mode is selected by setting bit TOCS (OPTION_REG<5>). In Counter mode, TimerO will increment, either on every rising or falling edge of pin RA4/TOCKI.
- The incrementing edge is determined by the TimerO Source Edge Select bit, TOSE (OPTION_REG<4>). Clearing bit TOSE selects the rising edge.

Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION_REG<5:0>).

2: The prescaler is shared with Watchdog Timer (refer to Figure 5-2 for detailed block diagram).

OPTION register	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
	bit 7							bit 0

- The output of the first multiplexer branches before reaching a second multiplexer. This selects either a direct path or the path taken through a programmable prescaler.
- □ The choice is controlled by bit **PSA** of the Option register. If PSA is set to 0, then the prescaler is assigned to the Timer 0.
- The prescaler itself is controlled by bits PS2, PS1 and PS0 of the Option register. They allow a choice of frequency divisions of the incoming clock signal.
- The output of the second multiplexer is synchronised with the internal clock, before becoming the input to the actual counter.
- When the counter overflows, it sets the timer overflow flag, one of the PIC microcontroller's four interrupt sources.

OPTION REGISTER (ADDRESS 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	
	bit 7							bit 0	
bit 7	RBPU: PO	ORTB Pull-up	Enable bit						-The PSA and PS2.PSA hits
	1 = PORT	TB pull-ups a	re disabled			-1			(ODTION DEC < 3:0 >)
	0 = POR	тв pull-ups al	re enabled i	by individual	port latch v	alues			
bit 6	INTEDG:	Interrupt Edg	e Select bit						determine the prescaler
	1 = Interr	upt on rising	edge of RB(assignment and prescale					
L:1. F				ratio.					
DIT 5		IRU CIOCK SO		-Clearing hit PSA will assign					
	1 = Trans	al instruction	CVCKI PIN	the prescaler to the Timer()					
hit 4		IRO Source E	dae Select I		modulo				
	$1 = \ln crer$	ment on high.	-to-low trans	module.					
	0 = Incre	ment on low-t	to-high trans	-When the prescaler is					
bit 3	PSA: Pres	scaler Assign	ment bit						assigned to the Timer0
	1 = Presc	aler is assigr	ned to the W	module, prescale values of					
	0 = Presc	aler is assigr	ned to the Ti	1:2, 1:4,, 1:256 are					
bit 2-0	PS2:PS0:	Prescaler Ra	ate Select bi	ts					selectable.
	Bit Value	TMR0 Rate	WDT Rate						$_{\rm If} TMPO = 1/2 TMPO$
	000	1:2	1:1						increases overy 2 instruction
	001	1:4	1:2						Increases every 2 instruction
	010	1:8 1:16	1:4						Cycle. If $IMRU=1/128$, $IMRU$
	100	1:32	1:16						increases every 128
	101	1:64	1:32						instruction cycle.
	111	1 : 128 1 : 256	1 : 128						

If prescaler value is b'000', what is the increment period of TMR0 and maximum interrupt delay? (Oscillator frequency 4 MHz)

SOLUTION

- □ internal frequency=4MHz/4=1MHz
- □ ICT (Instruction cycle time)=1/1MHz=1us
- Prescaler value=000, TMR0_rate=1/2
- $\Box IP(Increment period) = 2x1\mu s = 2\mu s$
- Timer overflow Interrupt occurs when TMR0 counts from h'FF' to h'00'. There are 256 numbers between h'00' to h'FF' for maximum interrupt delay.
- □ ID(Interrupt delay)=IPx256=2usx256=512us

Example: Use Timer 0 as a counter

- For an electronic ping-pong circuit,	********	*****	******	*****	********	
right paddle is used as the counter	;cntr demo				Counter Demonstration	
input, continuously displaying the	;This program	n demos	s Timer	0 as 0	counter, using ping-pong hardware	
current value on the LEDs connected	;TJW 15.4.05				Tested 15.4.05	
to Port B	*********	******	******	*****	***************************************	
	;Clock freq 8	300kHz	approx	(RC os	sc.)	
- To configure Timer 0, we'll need to	, POIL A 4	"out	paddie of play"	(lp) ((op)	
select its external input, i.e.	;Port B 7-0	"plav"	' leds ((all or	(9)	
T0CS=1.	;Interrupts n	not use	ed	(0111 0]		
- Due to less likelihood of bounce	;Config Word	RC os	scillato	or, WD	T off, PU timer on, code protect off	
rising edge (switch release) is	;					
colocted for input by cotting	#includ	de p16:	E84A.inc	2		
	;		0.0			
IUSE=U.	• Initialise	org	00			
- Exact number of switch presses will	, 11110141150	bsf	status.	rp0	:select memory bank 1	
be counted so by setting PSA=1,		movlw	B'00011	.000'	, solooo memolj sami l	
WatchDog Timer (WDT) will be		movwf	trisa		;port A according to above pattern	
able to use prescaler. Hence the		movlw	00			
values of PS2_PS1 and PS0 do not		movwf	trisb		;all port B bits output	
waldes of 152, 151 and 150 do not		movlw	B'00101	_000	;set up TMRO for external input, +ve edge,	1 -
matter.					;no presca.	те
 Rest of the bits of Option register 		movwf	TMR0		;as we are in Bank 1, this addresses OPTION	
are set to 0 since they don't matter.		bcf	status,	rp0	;select bank 0	
-A final value for the Option register	;					
setting is thus 00101000B		movlw	04	;swite	ch on "out of play" led to show power is on	
setting is thus obioiotoob.	1	movwí	porta	Conti	inversion display miners () on Doub D	
	тоор	movuf	north	; CONTI	Indously display Timer 0 on Port B	
		aoto	1000			
		end	L			

Hardware-generated delays

- We have used **software-generated delays** to time how long the LEDs are to be illuminated.
- This is only acceptable in simple programs, as in softwaregenerated delays the CPU is doing nothing useful during the whole of the delay.
- Now that we have a counter/timer at our disposal, we can use it to generate the delay and let CPU be free.
- This seems quite simple, but a small problem presents itself: how do we know when the delay period is up?
- If we have to keep checking the timer value, then we will have made little progress. This is where the 'interrupt on overflow' comes into its own.
- If things are set up so that an interrupt is generated as the delay ends, then we have a powerful means of creating efficient delays.

Hardware-generated delays

- □ As a first step, let's replace the 5 ms software delay subroutine with a delay controlled by Timer 0.
- The internal clock is approximately 800 kHz and the instruction cycle rate (Fosc/4) is therefore 200 kHz, or a period of 5 μs.
- Now with this clock frequency, Timer 0 would count up to its maximum value (255) in 255x5µs, or 1275µs, and would overflow on the next cycle, i.e. after 1280µs.
- We can, however, make use of the prescaler here. If the incoming signal is divided by 4 (i.e. PS2, PS1, PS0 set to 001), then Timer 0 will overflow after 256x4x5 µs, or 5.120µs. This is very close to the 5 ms we're looking for, but it's not quite exact.
- Although the ping-pong program does not need accurate timing, suppose we genuinely needed a delay very close to 5 ms?
- Let us divide the incoming clock by 8 instead of 4, which gives a divided frequency of 25 kHz, or a period of 40 μs.
- □ Now 125 Timer 0 input cycles will cause a delay of 40x125µs, or 5.00 ms, which is exactly our target.
- □ If we arrange for this prescaling, and at the start of each delay pre-load Timer 0 with 256-125=131, then an exact delay, terminated by the interrupt on overflow, is possible.

Write a code that produces 5ms delay using timer module and interrupt to switch on a LED connected to PORTB.

00000010 value in OPTION REGISTER

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	
	bit 7							bit 0	
bit 7	RBPU: PO	ORTB Pull-up	Enable bit						-The PSA and PS2.PS0 hits
	$1 = POR^{2}$ $0 = POR^{2}$	TB pull-ups a TB pull-ups a	re disabled re enabled <mark>k</mark>	oy individual	port latch v	alues			(OPTION_REG<3:0>)
bit 6	INTEDG:	Interrupt Edg	e Select bit						determine the prescaler
	1 = Interr 0 = Interr	upt on rising oupt on falling	edge of RB0 edge of RB	D/INT pin 0/INT pin					assignment and prescale
bit 5	TOCS: TN	IR0 Clock So	urce Select						
	1 = Trans 0 = Interr	sition on RA4/ nal instruction	T0CKI pin cycle clock	(CLKOUT)					-Clearing bit PSA will assign the prescaler to the Timer0
bit 4	TOSE: TM	IR0 Source E	dge Select l		module.				
	1 = Incre	ment on high-	-to-low trans	When the proceedor is					
	0 = Incre	ment on low-t	o-high trans	- When the prescale is					
bit 3	PSA: Pres	scaler Assign	ment bit	assigned to the Timero					
	1 = Presc	caler is assigr	ned to the W	module, prescale values of					
h:+ 0 0	0 = Presc	caler is assign	ted to the T	mero modul	е				1:2, 1:4,, 1:256 are
DIT 2-0	P52:P50:			ts					selectable.
	Bit Value	IMR0 Rate	WD1 Rate						-If TMR0=1/2, TMR0
	000 001 010 100 101 110	1 : 2 1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128	1 : 1 1 : 2 1 : 4 1 : 16 1 : 32 1 : 64 1 : 128						increases every 2 instruction cycle. If TMR0=1/128, TMR0 increases every 128 instruction cycle.
	111	1:256	1:128						

INTCON REGISTER (ADDRESS 0Bh, 8Bh)

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-x GIE EEIE TOIE INTE RBIE TOIF RBIF INTF bit 7 bit 0 GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts o = Disables all interrupts EEIE: EE Write Complete Interrupt Enable bit 1 = Enables the EE Write Complete interrupts o = Disables the EE Write Complete interrupt TOIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt o = Disables the TMR0 interrupt INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt o = Disables the RB0/INT external interrupt RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt o = Disables the RB port change interrupt T0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) o = TMR0 register did not overflow INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) o = The RB0/INT external interrupt did not occur **RBIF:** RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state Legend:

R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER FILE MAP -PIC16F84A

File Addre	File Address File Address							
00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h					
01h	TMR0	OPTION_REG	81h					
02h	PCL	PCL	82h					
03h	STATUS	STATUS	83h					
04h	FSR	FSR	84h					
05h	PORTA	TRISA	85h					
06h	PORTB	TRISB	86h					
07h	_	_	87h					
08h	EEDATA	EECON1	88h					
09h	EEADR	EECON2 ⁽¹⁾	89h					
0Ah	PCLATH	PCLATH	8Ah					
0Bh	INTCON	INTCON	8Bh					
0Ch	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0	8Ch					
4Fh 50h			CFh D0h					
7Fh	Bank 0	Bank 1	FFh					
Unim	plemented data me	emory location rea	ad as '0'					
Note 1:	Note 1: Not a physical register.							

	• • •				
- This includes both the	;Init:	ialise			
initialization section and the		org	0010		
revised delay subroutine.	start	bsf	status,5	;select	memory bank 1
- Interrupts are not enabled and		movlw	B'00011000'		
the subroutine determines when		movwf	trisa	;port A	according to above pattern
the delay is complete by testing		movlw	00		
the overflow interrupt flag.		movwf	trisb	;all por	rt B bits op
- The advantage to the		movlw	B'00000010'	;set up	TMRO for internal input, prescale by 8
programmer is that timing is		movwi	TMRU	; as we a	are in Bank I, this addresses OPTION
now achieved by manipulating		DCL	Status, 5	;select	Dank U
the Timer 0 settings, rather than	• • •				
by adjusting the software	:intro	oduces	delay of 5ms	approx	
routine.	,	delay!	5 movlw D'131		;preload counter, so that 125 cycles, each
- The 'interrupt on overflow' has		7			; of 40us, occur before timer overflow
not been enabled, as it would in		movwf	TMR0		
this instance offer little	del1	btfss	intcon,2		;test for Timer Overflow flag
advantage.		goto d	del1		;loop if not set
- In a more demanding		bcf ir	ntcon,2		;clear Timer Overflow flag
program, however, the interrupt		returr	1		
could be enabled and the time					
spent in the delay used to					
undertake other CPU activities.					

		LIST	P=16F84A		
		INCI	LUDE "P16f84A.INC"		
		config	_CP_OFF&_WDT_OFF&_XT_	OSC	
		org	0x00;		
		goto	o main		
		org	0x04;		
	Example	goto	counter_ISR		
		main			
		bsf	STATUS, RPO;		
	Explain what the	mov]	w b'00010000';		
		movv	of TRISA;		
	program does.	bsf	OPTION_REG, TOCS;		
_		bsf	OPTION_REG, TOSE;		
	Modify the	bsf	OPTION_REG, PSA;		
	program such that	bcf	STATUS, RPO;		
		clrf	PORTB;		
	the timer starts	bsf	INTCON,GIE;		
	counting from 253	bsf	INTCON, TOIE;		
	after the interrupt	bcf	INTCON, TOTF;		
	subroutine	movl	.w .253;		
	Sabioatine	movv	vf TMRO;		
	the prescaler with	loop no	pp;		
	rate 1 : 2 is used.	nop;			
		nop;			
		nop;			
		goto	100p;		
		counter_	ISK		
		DCI	INICUN, IOIF;		
		nop			
		nop			
		nop			
		rot f	io.		
		end	,		
		- JIIV			

To generate 1.28ms interrupt delay, what will be the first number of the TMR0.(Fosc=4MHz, Prescaler=110)

SOLUTION

- □ Internal frequency=4MHz/4=1MHz
- □ ICT (Instruction cycle time)=1/1MHz=1µs
- **\Box** For 1.28ms ID, 1.28ms/1 µs=1280 instruction.
- Prescaler=110; TMR0 increases every 128 instruction cycle. 1280 /128=10 ,
- To create 1.28ms interrupt delay, TMR0 should count 10 number.
- Timer overflow Interrupt occurs when TMR0 count from h'FF' to h'00'. 256-10=246;First number of the TMR0=246.

- Assume that the oscillator frequency is 4Mhz. Configure the Timer 0 such that an interrupt occurs after approximately 65.5msec.
- Write a program that
 - increments PORTB every 65.5msec
 - clears PORTB and TMR0 if the button at pin RA2 is pressed.