MECE336 Microprocessors I
Timer/Counter

Dr. Kurtulus Erinc Akdogan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

¢7-Ry CANKAYA UNIVERSITESI
>’/ MEKATRONIK MUHENDISLIGI BOLUMU

mailto:kurtuluserinc@cankaya.edu.tr

PIC16F84 TIMER PROGRAMMING

The PIC16F84 has two timers depending on the family member.
B TimerO
B Watchdog timer (WDT).

They can be used either as timers to generate a time delay or as
counters to count events happening outside the microcontroller.

Every timer needs a clock pulse to tick. The clock source can be
internal or external.

If we use the internal clock source, then 1/4th of the frequency of
the crystal oscillator on the OSC1 (Fosc/4) pin is fed into the
timer. Therefore it is used for time delay generation and for that
reason is called a timer.

By choosing the external clock option, we feed pulses through
one of the PIC16’s pins: this is called a counter.

REGISTER FILE MAP -

TMRO

TMRO is an 8-bit special function register
in the RAM. It has the following features;

TimerO can operate as a 8-bit timer or as
a 8-bit counter.

Readable and writable

Timer O is configurable, controlled by a
number of bits that appear in the OPTION
register.

Internal or external clock can be selected

Edge can be selected for external clock
(rising or falling edge)

8-bit software programmable prescaler
Interrupt occurs when TMRO counts from

h’FF’ to h'00" (Timer overflow interrupt)

File Address File Address
00h | Indirect addr.'" | Indirect addr" | soh
01h i TMRO€—»OPTION_REG | 81h
02h PCL PCL 82h
03h STATUS STATUS 83h
04h FSR FSR 84h
05h PORTA TRISA 85h
06h PORTB TRISB 86h
07h = = 87h
08h EEDATA EECON/ 88h
09h EEADR EECON2! 89h
DAh PCLATH PCLATH 8Ah
0Bh INTCON INTCON 8Bh
0Ch &Ch

E8

General Mapped

Purpose (accesses)

Registers in Bank 0

(SRAM)
4Fh CFh
50h DOh
7Fh w FFh

Bank 0 Bank 1

[Unimplemented data memaory location, read as '0".
Note 1: Nota physical register.

Data Bus
P

PSouTt P
8
1) S
Sync with
Df. 1 Internal TMRO
RA4/TOCKI /] Programmable 0 Clocks

Fosc/4

TIMERO BLOCK DIAGRAM w
0

: PSouT
pin Prescaler .
TOSE (2 Cycle Delay)
s
Set Interrupt
PS2, PS1, PS50 PSA Flag bit TOIF
TOCS on Overflow

Note 1: TOCS, TOSE, PSA, PS2:PS0 (OPTION_REG<5:0>).
2: The prescaler is shared with Watchdog Timer (refer to Figure 5-2 for detailed block diagram).

OPTION register _ RW-1 RW-1 RW-1 RW-l__ RW-1__ RW-1 _ RW-1 _ RW-
| RBPU | INTEDG | TocS | TOSE | PSA | Ps2 | PSt | Pso |
bit 7 bit 0

[0 TOCS controls the sources of the clock input to the TMRO counter
whether RA4 pin or internal instruction cycle frequency, labelled Fosc/4.

[0 Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In
Timer mode, the Timer0 module will increment every instruction cycle.

[0 Counter mode is selected by setting bit TOCS (OPTION_REG<5>). In
Counter mode, Timer0 will increment, either on every rising or falling
edge of pin RA4/TOCKI.

[0 The incrementing edge is determined by the Timer0O Source Edge
Select bit, TOSE (OPTION_REG<4>). Clearing bit TOSE selects the
rising edge.

TIMERO BLOCK DIAGRAM
Da;g\ Bus
0 PSoUT S

Fosc/4
8
1 N
Sync with
Dﬁl 1 internal TMRO
Clock
RA4/TOCKI /] Programmable 0 " |psour
pin Prescaler
TOSE (2 Cycle Delay)
s
Set Interrupt
PS2, PS1, PS50 PSA Flag bit TOIF
TOCS on Overflow

Note 1: TOCS, TOSE, PSA, PS2:PS0 (OPTION_REG<5:0>).
2: The prescaler is shared with Watchdog Timer (refer to Figure 5-2 for detailed block diagram).

OPTION register RAN-1 RW-1 RW-1 R/W-1 RAW-1 RAN-1 RW-1 RW-1

O

| RBPU | INTEDG | TocS | TOSE | PSA | Ps2 | PSt | Pso |

bit 7 bit 0
The output of the first multiplexer branches before reaching a second multiplexer.
This selects either a direct path or the path taken through a programmable
prescaler.

The choice is controlled by bit PSA of the Option register. If PSA is set to O, then
the prescaler is assigned to the Timer 0.

The prescaler itself is controlled by bits PS2, PS1 and PSO of the Option register.
They allow a choice of frequency divisions of the incoming clock signal.

The output of the second multiplexer is synchronised with the internal clock,
before becoming the input to the actual counter.

When the counter overflows, it sets the timer overflow flag, one of the PIC
microcontroller’s four interrupt sources.

OPTION REGISTER (ADDRESS 81h)

RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-
| RBPU | INTEDG | ToCcS | TosE | PSA | Ps2 | Ps1 | Pso |

bit 7

bit &

bit 5

bit 4

bit 3

bit 2-0

bit 7

RBPU: PORTB Pull-up Enable bit
1= PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual port latch values

INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RBO/INT pin

0 = Interrupt on falling edge of RBO/INT pin

TOCS: TMRO Clock Source Select bit

1 = Transition on RA4/TOCKI pin

0 = Internal instruction cycle clock (CLKOUT)

TOSE: TMRO Source Edge Select bit

1 = Increment on high-to-low transition on RA4/TOCKI pin
0 = Increment on low-to-high transition on RA4/TOCKI pin
PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT
0 = Prescaler is assigned to the Timer0 module

PS2:PS0: Prescaler Rate Select bits
Bit Value TMRO Rate WDT Rate

000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8
100 1:32 1:16
101 1:64 1:32
110 1:128 1:64
111 1256 1:128

bit 0

-The PSA and PS2:PSO bits
(OPTION_REG<3:0>)
determine the prescaler
assignment and prescale
ratio.

-Clearing bit PSA will assign
the prescaler to the Timer0O
module.

-When the prescaler is
assigned to the Timer0
module, prescale values of
1:2,1:4, ..., 1:256 are
selectable.

-If TMRO=1/2, TMRO
increases every 2 instruction
cycle. If TMR0=1/128, TMRO
increases every 128
instruction cycle.

Example

OO0 If prescaler value is b’000’, what is the increment period of TMRO
and maximum interrupt delay? (Oscillator frequency 4 MHz)

SOLUTION

O internal frequency=4MHz/4=1MHz

0 ICT (Instruction cycle time)=1/1MHz=1us

0 Prescaler value=000, TMRO_rate=1/2

O IP(Increment period)=2x1us=2us

0 Timer overflow Interrupt occurs when TMRO counts from h'FF’ to
h’00’. There are 256 numbers between h’'00’ to h'FF’ for
maximum interrupt delay.

O ID(Interrupt delay)=IPx256=2usx256=512us

Example:
Use Timer

- For an electronic ping-pong circuit,
right paddle is used as the counter
input, continuously displaying the
current value on the LEDs connected
to Port B.

- To configure Timer 0, we’ll need to
select its external input, i.e.
TOCS=1.

- Due to less likelihood of bounce,
rising edge (switch release) is
selected for input by setting
TOSE=0.

- Exact number of switch presses will
be counted so by setting PSA=1,
WatchDog Timer (WDT) will be
able to use prescaler. Hence the
values of PS2, PS1 and PSO do not
matter.

- Rest of the bits of Option register
are set to 0 since they don’t matter.

-A final value for the Option register

setting is th 101 B.

0 as a counter

B S S S S RS S S S S SRS SRR RS RS E RS SRR RS SR SRR S S EEEEEREEEEEEEEEEEEEEEE RS
’

;cntr demo Counter Demonstration
;This program demos Timer 0 as counter, using ping-pong hardware
;TIJW 15.4.05 Tested 15.4.05

,-***************************‘k**

;Clock freq 800kHz approx (RC osc.)

;Port A 4 right paddle (ip) Counter input.
’ 2 "out of play" led (op)

;Port B 7-0 "play" leds (all op)

;Interrupts not used
;Config Word: RC oscillator, WDT off, PU timer on, code protect off

’

#include pl6f84A.inc

org 00

; Initialise
bsf status, rp0 ;select memory bank 1
movlw B'00011000'
movwf trisa ;port A according to above pattern
movlw 00
movwf trisb ;all port B bits output
movlw B'00101000"' ;set up TMRO for external input, +ve

;no

movwf TMRO ;as we are in Bank 1, this addresses
bcf status, rp0 ;select bank O
movliw 04 ;switch on "out of play" led to show power
movwf porta

loop movif TMRO,0 ;Continuously display Timer 0 on Port B
movwf portb
goto loop

end

edge,
prescale

OPTION

is on

Hardware-generated delays

We have used software-generated delays to time how long the
LEDs are to be illuminated.

This is only acceptable in simple programs, as in software-
generated delays the CPU is doing nothing useful during the whole of
the delay.

Now that we have a counter/timer at our disposal, we can use it to
generate the delay and let CPU be free.

This seems quite simple, but a small problem presents itself: how do
we know when the delay period is up?

If we have to keep checking the timer value, then we will have made
little progress. This is where the ‘interrupt on overflow’ comes into
its own.

If things are set up so that an interrupt is generated as the delay
ends, then we have a powerful means of creating efficient delays.

Hardware-generated delays

As a first step, let’s replace the 5 ms software delay subroutine with a delay controlled by
Timer O.

The internal clock is approximately 800 kHz and the instruction cycle rate (Fosc/4) is
therefore 200 kHz, or a period of 5 ps.

Now with this clock frequency, Timer 0 would count up to its maximum value (255) in
255x5us, or 1275us, and would overflow on the next cycle, i.e. after 1280us.

We can, however, make use of the prescaler here. If the incoming signal is divided by 4 (i.e.
PS2, PS1, PSO set to 001), then Timer 0 will overflow after 256x4x5 us, or 5.120pus. This is
very close to the 5 ms we’re looking for, but it’s not quite exact.

Although the ping-pong program does not need accurate timing, suppose we genuinely
needed a delay very close to 5 ms?

Let us divide the incoming clock by 8 instead of 4, which gives a divided frequency of 25 kHz,
or a period of 40 ps.

Now 125 Timer O input cycles will cause a delay of 40x125pus, or 5.00 ms, which is exactly our
target.

If we arrange for this prescaling, and at the start of each delay pre-load Timer 0 with 256-
125=131, then an exact delay, terminated by the interrupt on overflow, is possible.

Example

Write a code that produces S5ms delay
using timer module and interrupt to
switch on a LED connected to PORTB.

00000010 value in OPTION REGISTER

RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-1 RW-
| RBPU | INTEDG | ToCcS | TosE | PSA | Ps2 | Ps1 | Pso |

bit 7

bit &

bit 5

bit 4

bit 3

bit 2-0

bit 7

RBPU: PORTB Pull-up Enable bit
1= PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual port latch values

INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RBO/INT pin

0 = Interrupt on falling edge of RBO/INT pin

TOCS: TMRO Clock Source Select bit

1 = Transition on RA4/TOCKI pin

0 = Internal instruction cycle clock (CLKOUT)

TOSE: TMRO Source Edge Select bit

1 = Increment on high-to-low transition on RA4/TOCKI pin
0 = Increment on low-to-high transition on RA4/TOCKI pin
PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT
0 = Prescaler is assigned to the Timer0 module

PS2:PS0: Prescaler Rate Select bits
Bit Value TMRO Rate WDT Rate

000 1:2 1:1
001 1:4 1:2
010 1:8 1:4
011 1:16 1:8
100 1:32 1:16
101 1:64 1:32
110 1:128 1:64
111 1256 1:128

bit 0

-The PSA and PS2:PSO bits
(OPTION_REG<3:0>)
determine the prescaler
assignment and prescale
ratio.

-Clearing bit PSA will assign
the prescaler to the Timer0O
module.

-When the prescaler is
assigned to the Timer0
module, prescale values of
1:2,1:4, ..., 1:256 are
selectable.

-If TMRO=1/2, TMRO
increases every 2 instruction
cycle. If TMR0=1/128, TMRO
increases every 128
instruction cycle.

INTCON REGISTER

(ADDRESS 0Bh, 8Bh)

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit0

REGISTER FILE MAP -
PIC16F84A

RWO RWO RWO RWD RW-0 RWO RWO RWx
| GE | EEIE | TOE | INTE | RBE | TOF | INTF | RBIF |
bit 7 bit 0

GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

0 = Disables all interrupts

EEIE: EE Write Complete Interrupt Enable bit

1 = Enables the EE Write Complete interrupts
0 = Disables the EE Write Complete interrupt

TOIE: TMRO Overflow Interrupt Enable bit

1 = Enables the TMRO interrupt

0 = Disables the TMRO interrupt

INTE: RBO/INT External Interrupt Enable bit
1 = Enables the RBO/INT external interrupt

0 = Disables the RBO/INT external interrupt
RBIE: RB Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt
o = Disables the RB port change interrupt

TOIF: TMRO Overflow Interrupt Flag bit

1 = TMRO register has overflowed (must be cleared in software)
0 = TMRO register did not overflow

INTF: RBO/INT External Interrupt Flag bit

1 = The RBO/INT external interrupt occurred (must be cleared in software)
0 = The RBO/INT external interrupt did not occur

RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)
o0 = None of the RB7:RB4 pins have changed state

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0
-n=Value at POR 1" = Bitis set " = Bitis cleared X = Bit is unknown

File Address File Address
00h | Indirect addr‘" | Indirect addr." | soh
01h TMRO OPTION _REG | 81h
02h PCL PCL 82h
03h STATUS STATUS 83h
04h FSR FSR 84h
05h PORTA TRISA 85h
06h PORTB TRISB 86h
07h = = 87h
08h EEDATA EECON/ 88h
09h EEADR EECON2! 89h
DAh PCLATH PCLATH 8Ah
0Bh INTCON INTCON 8Bh
0Ch &Ch

E8

General Mapped

Purpose (accesses)

Registers in Bank 0

(SRAM)
4Fh CFh
50h DOh
7Fh w FFh

Bank 0 Bank 1

[1 Unimplemented data memory location, read as '0".

Note 1:

Mot a physical register.

Example

- This includes both the :Initialise

initialization section and the org 0010

revised delay subroutine. start bsf status, 5 ;select memory bank 1

- Interrupts are not enabled and movlw B'00011000"

the subroutine determines when movwf trisa ;port A according to above pattern

the delay is complete by testing movlw 00

the overflow interrupt flag. movwi trisb ;all port B bits op
movlw B'00000010'" ;set up TMRO for internal input, prescale by 8

;:;)Ziaani\sg:?gihg%?ﬁwmg is movwf TMRO ;as we are in Bank 1, this addresses OPTION
bcf status, 5 ;select bank 0

now achieved by manipulating
the Timer O settings, rather than

by adjusting the software ;introduces delay of 5ms approx

routine. delay5 movlw D'131" ;preload counter, so that 125 cycles, each
- The ‘interrupt on overflow’ has ;of 40us, occur before timer overflow

not been enabled, as it would in movwf TMRO

this instance offer little dell btfss intcon,?2 ;test for Timer Overflow flag

advantage. goto dell ;loop if not set

- In a more demanding bcf intcon, 2 ;clear Timer Overflow flag

program, however, the interrupt return

could be enabled and the time
spent in the delay used to
undertake other CPU activities.

LIST P=16F84A
INCLUDE "P16£84A.INC"
—config _CP_OFF& WDT_OFF&_XT_0SC

org 0x00;
goto main
org 0x04;
Example
main

bsf STATUS,RPO;
movlw b’00010000’;
movwf TRISA;

Explain what the

program does. bsf OPTION_REG, TOCS;
. bsf OPTION_REG, TOSE;
Modify the bsf OPTION.REG, PSA;
bct STATUS,RPO;
program such that S R
B the timer starts bsf INTCON,GIE;
counting from 253 bst INTCON,TOIE;
after the interrupt BEx — DHEOONLOTES
: movlw .253;
subroutine movwf TMRO:
B the prescaler with 1loop nop;
rate 1 : 2 is used. nop;
nop;
nop;
goto loop;

counter_ISR
bcf INTCON, TOTF;
nop;
nop;
nop;
nop;
retfie;
end

Example

[0 To generate 1.28ms interrupt delay, what will be the first number
of the TMRO.(Fosc=4MHz, Prescaler=110)

SOLUTION

Internal frequency=4MHz/4=1MHz

ICT (Instruction cycle time)=1/1MHz=1us

For 1.28ms ID, 1.28ms/1 us=1280 instruction.

Prescaler=110; TMRO increases every 128 instruction cycle.
1280 /128=10,

To create 1.28ms interrupt delay, TMRO should count 10 number.

Timer overflow Interrupt occurs when TMRO count from h'FF’ to
h'00’. 256-10=246;First number of the TMR0=246.

O0O00d

O O

Example

[0 Assume that the oscillator frequency is 4Mhz.
Configure the Timer O such that an interrupt
occurs after approximately 65.5msec.

[0 Write a program that

B increments PORTB every 65.5msec

B clears PORTB and TMRO if the button at pin RA2 is
pressed.

