
MECE336 Microprocessors I
Timer/Counter

Dr. Kurtuluş Erinç Akdoğan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

mailto:kurtuluserinc@cankaya.edu.tr


PIC16F84 TIMER PROGRAMMING
 The PIC16F84 has two timers depending on the family member. 

 Timer 0

 Watchdog timer (WDT). 

 They can be used either as timers to generate a time delay or as 
counters to count events happening outside the microcontroller.

 Every timer needs a clock pulse to tick. The clock source can be 
internal or external. 

 If we use the internal clock source, then 1/4th of the frequency of 
the crystal oscillator on the OSC1 (Fosc/4) pin is fed into the 
timer. Therefore it is used for time delay generation and for that 
reason is called a timer.

 By choosing the external clock option, we feed pulses through 
one of the PIC16’s pins: this is called a counter.



TMR0

 TMR0 is an 8-bit special function register 
in the RAM. It has the following features;

 Timer0 can operate as a 8-bit timer or as 
a 8-bit counter.

 Readable and writable

 Timer 0 is configurable, controlled by a 
number of bits that appear in the OPTION 
register.

 Internal or external clock can be selected

 Edge can be selected for external clock 
(rising or falling edge)

 8-bit software programmable prescaler

 Interrupt occurs when TMR0 counts from 
h’FF’ to h’00’ (Timer overflow interrupt)

REGISTER FILE MAP -

PIC16F84A



 T0CS controls the sources of the clock input to the TMR0 counter
whether RA4 pin or internal instruction cycle frequency, labelled Fosc/4. 

 Timer mode is selected by clearing bit T0CS (OPTION_REG<5>). In 
Timer mode, the Timer0 module will increment every instruction cycle.

 Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In 
Counter mode, Timer0 will increment, either on every rising or falling 
edge of pin RA4/T0CKI. 

 The incrementing edge is determined by the Timer0 Source Edge 
Select bit, T0SE (OPTION_REG<4>). Clearing bit T0SE selects the 
rising edge.

TIMER0 BLOCK DIAGRAM

OPTION register



 The output of the first multiplexer branches before reaching a second multiplexer. 
This selects either a direct path or the path taken through a programmable 
prescaler. 

 The choice is controlled by bit PSA of the Option register. If PSA is set to 0, then 
the prescaler is assigned to the Timer 0. 

 The prescaler itself is controlled by bits PS2, PS1 and PS0 of the Option register. 
They allow a choice of frequency divisions of the incoming clock signal.

 The output of the second multiplexer is synchronised with the internal clock, 
before becoming the input to the actual counter.

 When the counter overflows, it sets the timer overflow flag, one of the PIC 
microcontroller’s four interrupt sources.

TIMER0 BLOCK DIAGRAM

OPTION register



OPTION REGISTER (ADDRESS 81h)

-The PSA and PS2:PS0 bits 
(OPTION_REG<3:0>)
determine the prescaler
assignment and prescale
ratio.

-Clearing bit PSA will assign 
the prescaler to the Timer0
module. 

-When the prescaler is 
assigned to the Timer0
module, prescale values of 
1:2, 1:4, ..., 1:256 are
selectable.

-If TMR0=1/2, TMR0 
increases every 2 instruction 
cycle. If TMR0=1/128, TMR0 
increases every 128 
instruction cycle.



Example

 If prescaler value is b’000’, what is the increment period of TMR0 
and maximum interrupt delay? (Oscillator frequency 4 MHz)

SOLUTION

 internal frequency=4MHz/4=1MHz

 ICT (Instruction cycle time)=1/1MHz=1us

 Prescaler value=000, TMR0_rate=1/2

 IP(Increment period)=2x1μs=2μs

 Timer overflow Interrupt occurs when TMR0 counts from h’FF’ to 
h’00’. There are 256 numbers between h’00’ to h’FF’ for 
maximum interrupt delay.

 ID(Interrupt delay)=IPx256=2usx256=512us



Example: 
Use Timer 0 as a counter

- For an electronic ping-pong circuit, 
right paddle is used as the counter 
input, continuously displaying the 
current value on the LEDs connected 
to Port B.

- To configure Timer 0, we’ll need to 
select its external input, i.e. 
T0CS=1. 

- Due to less likelihood of bounce, 
rising edge (switch release) is 
selected for input by setting
T0SE=0. 

- Exact number of switch presses will
be counted so by setting PSA=1, 
WatchDog Timer (WDT) will be 
able to use prescaler. Hence the 
values of PS2, PS1 and PS0 do not 
matter.

- Rest of the bits of Option register
are set to 0 since they don’t matter. 

-A final value for the Option register 
setting is thus 00101000B.



Hardware-generated delays
 We have used software-generated delays to time how long the

LEDs are to be illuminated. 

 This is only acceptable in simple programs, as in software-
generated delays the CPU is doing nothing useful during the whole of 
the delay. 

 Now that we have a counter/timer at our disposal, we can use it to 
generate the delay and let CPU be free.

 This seems quite simple, but a small problem presents itself: how do 
we know when the delay period is up? 

 If we have to keep checking the timer value, then we will have made 
little progress. This is where the ‘interrupt on overflow’ comes into 
its own. 

 If things are set up so that an interrupt is generated as the delay 
ends, then we have a powerful means of creating efficient delays.



Hardware-generated delays
 As a first step, let’s replace the 5 ms software delay subroutine with a delay controlled by 

Timer 0. 

 The internal clock is approximately 800 kHz and the instruction cycle rate (Fosc/4) is 
therefore 200 kHz, or a period of 5 μs. 

 Now with this clock frequency, Timer 0 would count up to its maximum value (255) in 
255x5μs, or 1275μs, and would overflow on the next cycle, i.e. after 1280μs.

 We can, however, make use of the prescaler here. If the incoming signal is divided by 4 (i.e. 
PS2, PS1, PS0 set to 001), then Timer 0 will overflow after 256x4x5 μs, or 5.120μs. This is 
very close to the 5 ms we’re looking for, but it’s not quite exact.

 Although the ping-pong program does not need accurate timing, suppose we genuinely 
needed a delay very close to 5 ms? 

 Let us divide the incoming clock by 8 instead of 4, which gives a divided frequency of 25 kHz, 
or a period of 40 μs. 

 Now 125 Timer 0 input cycles will cause a delay of 40x125μs, or 5.00 ms, which is exactly our 
target. 

 If we arrange for this prescaling, and at the start of each delay pre-load Timer 0 with 256-
125=131, then an exact delay, terminated by the interrupt on overflow, is possible.



Example

 Write a code that produces 5ms delay 
using timer module and interrupt to 
switch on a LED connected to PORTB.



00000010 value in OPTION REGISTER 

-The PSA and PS2:PS0 bits 
(OPTION_REG<3:0>)
determine the prescaler
assignment and prescale
ratio.

-Clearing bit PSA will assign 
the prescaler to the Timer0
module. 

-When the prescaler is 
assigned to the Timer0
module, prescale values of 
1:2, 1:4, ..., 1:256 are
selectable.

-If TMR0=1/2, TMR0 
increases every 2 instruction 
cycle. If TMR0=1/128, TMR0 
increases every 128 
instruction cycle.



INTCON REGISTER 
(ADDRESS 0Bh, 8Bh)

REGISTER FILE MAP -

PIC16F84A



Example
- This includes both the 
initialization section and the 
revised delay subroutine.

- Interrupts are not enabled and 
the subroutine determines when 
the delay is complete by testing 
the overflow interrupt flag. 

- The advantage to the 
programmer is that timing is 
now achieved by manipulating
the Timer 0 settings, rather than 
by adjusting the software 
routine. 

- The ‘interrupt on overflow’ has 
not been enabled, as it would in 
this instance offer little 
advantage.

- In a more demanding 
program, however, the interrupt 
could be enabled and the time 
spent in the delay used to 
undertake other CPU activities.



Example

 Explain what the 
program does.

 Modify the 
program such that
 the timer starts 

counting from 253 
after the interrupt 
subroutine

 the prescaler with 
rate 1 : 2 is used.



Example

 To generate 1.28ms interrupt delay, what will be the first number 
of the TMR0.(Fosc=4MHz, Prescaler=110)

SOLUTION

 Internal frequency=4MHz/4=1MHz

 ICT (Instruction cycle time)=1/1MHz=1μs

 For 1.28ms ID, 1.28ms/1 μs=1280 instruction.

 Prescaler=110; TMR0 increases every 128 instruction cycle. 
1280 /128=10 ,

 To create 1.28ms interrupt delay, TMR0 should count 10 number.

 Timer overflow Interrupt occurs when TMR0 count from h’FF’ to 
h’00’. 256-10=246;First number of the TMR0=246.



Example

 Assume that the oscillator frequency is 4Mhz. 
Configure the Timer 0 such that an interrupt 
occurs after approximately 65.5msec.

 Write a program that

 increments PORTB every 65.5msec

 clears PORTB and TMR0 if the button at pin RA2 is 
pressed.


