MECE336 Microprocessors I Sleep, Watchdog Timer, EEPROM

Dr. Kurtuluş Erinç Akdoğan

kurtuluserinc@cankaya.edu.tr

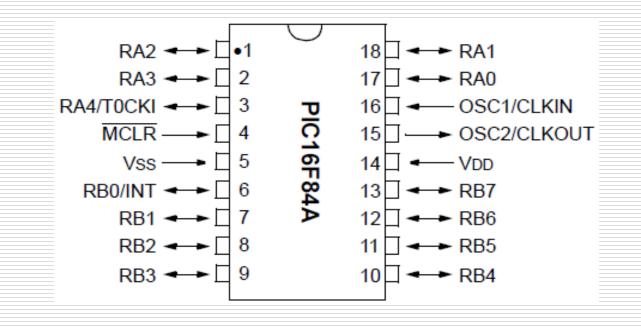
Course Webpage: http://MECE336.cankaya.edu.tr

Sleep

- □ Sleep mode is an important way of saving power.
- □ The microcontroller can be put into this mode by executing the instruction SLEEP.
- SLEEP: Go into standby mode.
- Once in Sleep mode, the microcontroller almost goes into suspended animation.
 - The clock oscillator is switched off,
 - WDT is cleared,
 - program execution is suspended,
 - all ports retain their current settings
 - PD and TO bits in the Status register are cleared and set respectively.
 - If enabled, the WDT continues running.
 - Under these conditions, power consumption falls to a negligible amount a typical value of 1 µA, under specific ideal operating conditions.

off		
	SLEEP	
d,	Syntax:	[<i>label</i>] SLEEP
	Operands:	None
	Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
	Status Affected:	TO, PD
Ð	Description:	The power-down status bit, PD is cleared. Time-out status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.

Mnemonic, Operands	Description	Cycles	Status Affected	
BYTE-ORIENTED FILE REGISTER OPERATIONS				
ADDWF f, d ANDWF f, d CLRF f CLRW - COMF f, d	Add W and f AND W with f Clear f Clear W Complement f	1 1 1 1 1	C,DC,Z Z Z Z Z	
DECF f, d DECFSZ f, d INCF f, d INCFSZ f, d IORWF f, d	Decrement f Decrement f, Skip if 0 Increment f Increment f, Skip if 0 Inclusive OR W with f	1 1 (2) 1 1 (2) 1	z z z	
MOVF f, d MOVWF f NOP - RLF f, d	Move f Move W to f No Operation Rotate Left f through Carry	1 1 1 1	Z	
RRF f, d SUBWF f, d SWAPF f, d XORWF f, d	Rotate Right f through Carry Subtract W from f Swap nibbles in f Exclusive OR W with f	1 1 1 1	C C,DC,Z Z	
BIT-ORIEN	NTED FILE REGISTER OPERATIONS			
BCFf, bBSFf, bBTFSCf, bBTFSSf, b	Bit Clear f Bit Set f Bit Test f, Skip if Clear Bit Test f, Skip if Set	1 1 1 (2) 1 (2)		
ADDLW k ANDLW k CALL k CLRWDT -	L AND CONTROL OPERATIONS Add literal and W AND literal with W Call subroutine Clear Watchdog Timer	1 1 2 1	C,DC,Z Z TO,PD	
GOTO k IORLW k MOVLW k RETFIE -	Go to address Inclusive OR literal with W Move literal to W Return from interrupt	2 1 1 2	Z	
 RETLW k RETURN - SLEEP - SUBLW k XORLW k	Return with literal in W Return from Subroutine Go into standby mode Subtract W from literal Exclusive OR literal with W	2 2 1 1 1	TO,PD C,DC,Z Z	


_

Status Register

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
	IRP	RP1	RP0	TO	PD	Z	DC	С
	bit 7							bit 0
bit 7-6	Unimplem	ented: Mair	ntain as '0'					
bit 5	RP0: Regi	ster Bank Se	elect bits (us	ed for direct	addressing)		
		1 (80h - FF	*					
	_	0 (00h - 7Fi	n)					
bit 4	TO: Time-o		numm in also	ation on an	nnn instruct			
		oower-up, CI T time-out o		ction, or SL	EEP Instruct	ion		
bit 3	PD: Power		oounou					
Dit C		power-up or	by the CLRW	DT instructio	on			
		ecution of th	-					
bit 2	Z: Zero bit							
		esult of an ar		~ .				
		esult of an ar		• •				
bit 1		DC: Digit Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)						
		1 = A carry-out from the 4th low order bit of the result occurred						
	_	0 = No carry-out from the 4th low order bit of the result						
bit 0		C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed) A carry-out from the Most Significant Bit of the result occurred 						
	,							
		rry-out from	~					
	Note:				the twos c		of the secon	d operand.
					his bit is load			
		bit of the so	ource registe	r.			-	

Sleep: Awakening

External reset through MCLR pin. While this causes a wake-up, it also resets the microcontroller; therefore, its use seems limited to complete program restarts. It is possible, however, to detect that the microcontroller has just been in Sleep mode, due to the state of the PD pin in the Status register.

Sleep: Awakening

- WDT wake-up. WDT is blocked from causing a reset when in Sleep. Instead, on overflow it just causes a wake-up from Sleep, and the microcontroller continues program execution from the instruction following the Sleep mode.
- Occurrence of interrupt. If any interrupt was enabled prior to going into SLEEP, upon receipt of interrupt input, wake-up from Sleep occurs regardless of the state of the Global Interrupt Enable. Timer 0 cannot, however, generate an interrupt, as the internal clock is disabled.

Example

- Write a program that counts the number of positive transitions on input RB.0/INT and displays the current "count" on four LEDs on outputs RB.4 - RB.7.
- Note that the INTEDG bit in the OPTION_REG may be set such that the external interrupt occurs on the positive edge of a signal on RB.0

INTCON REGISTER (ADDRESS 0Bh, 8Bh)

bit 7

bit 6

bit 5

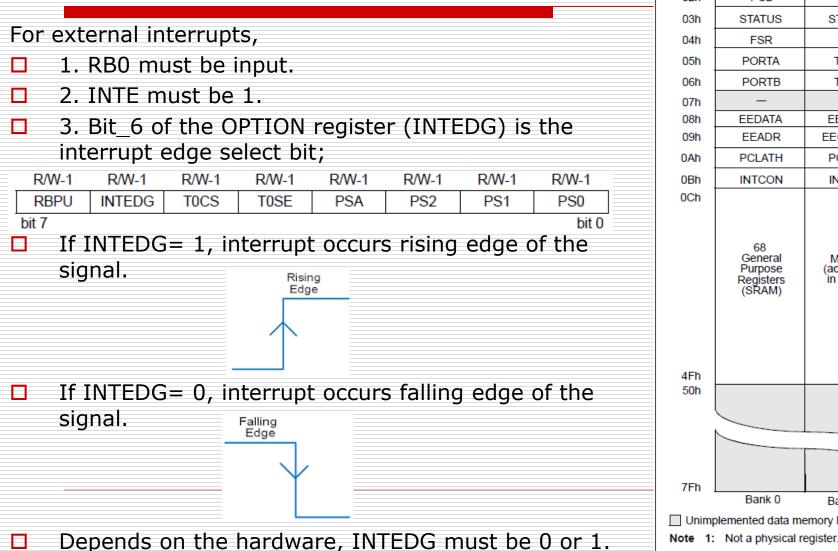
bit 4

bit 3

bit 2

bit 1

bit 0


R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-x GIE EEIE TOIE INTE RBIE TOIF RBIF INTF bit 7 bit 0 GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts o = Disables all interrupts EEIE: EE Write Complete Interrupt Enable bit 1 = Enables the EE Write Complete interrupts o = Disables the EE Write Complete interrupt TOIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt o = Disables the TMR0 interrupt INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt o = Disables the RB0/INT external interrupt RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt o = Disables the RB port change interrupt T0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) o = TMR0 register did not overflow INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) o = The RB0/INT external interrupt did not occur **RBIF:** RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state Legend:

R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER FILE MAP -PIC16F84A

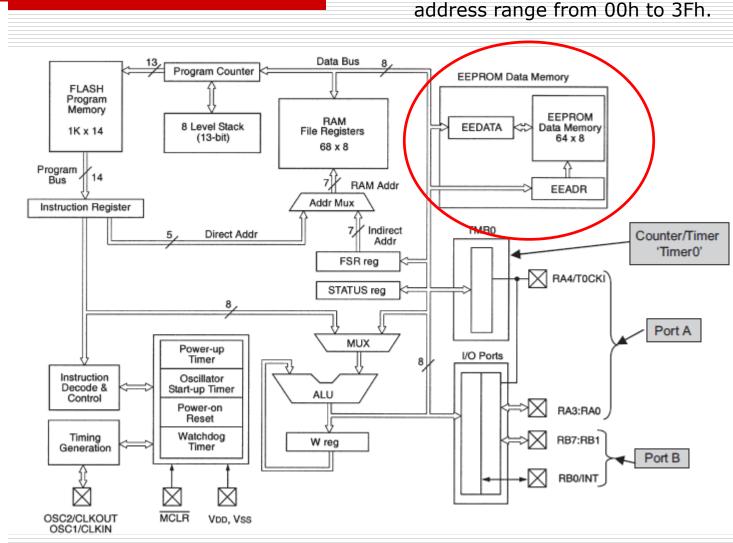
	File Addre	ss	F	ile Address		
	00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h		
	01h	TMR0	OPTION REG	81h		
	02h	PCL	PCL	82h		
	03h	STATUS	STATUS	83h		
	04h	FSR	FSR	84h		
	05h	PORTA	TRISA	85h		
	06h	PORTB	TRISB	86h		
	07h	_	_	87h		
_	08h	EEDATA	EECON1	88h		
	09h	EEADR	EECON2 ⁽¹⁾	89h		
	0Ah	PCLATH	PCLATH	8Ah		
_	0Bh	INTCON	INTCON	8Bh		
	0Ch			8Ch		
		68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0			
	4Fh 50h			CFh D0h		
	nuc			DUN		
_						
_						
				۱ ۱		
-	7Fh	Bank 0		FFh		
	_		Bank 1			
	 Unimplemented data memory location, read as '0'. Note 1: Not a physical register. 					

External interrupts and **OPTION** register

REGISTER FILE MAP -PIC16F84A

File Address File Address							
00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h				
01h	TMR0	OPTION_REG	81h				
02h	PCL	PCL	82h				
03h	STATUS	STATUS	83h				
04h	FSR	FSR	84h				
05h	PORTA	TRISA	85h				
06h	PORTB	TRISB	86h				
07h	_	_	87h				
08h	EEDATA	EECON1	88h				
09h	EEADR	EECON2 ⁽¹⁾	89h				
0Ah	PCLATH	PCLATH	8Ah				
0Bh	INTCON	INTCON	8Bh				
0Ch			8Ch				
	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0					
4Fh			CFh				
50h			D0h				
			4				
			}				
7Fh	Bank 0	Bank 4	FFh				
	Bank 0 Bank 1						
			au as '0'.				
Note 1: Not a physical register.							

LIST P=16F84A		
INCLUDE "P16f84A.INC"	PT1: SLEEP	
CONFIGCP_OFF&_WDT_OFF&_XT_OSC	GOTO PT1	
	INT_SERV:	
ORG 00	INCF COUNTER, F	
GOTO MAIN		
	BTFSS COUNTER, 0	; light the
ORG 04		; appropriate LEDs
GOTO INT SERV	BCF PORTB, 4	
	BTFSC COUNTER, 0	
MAIN:	BSF PORTB, 4	
BSF STATUS, RPO ; bank 1	BTFSS COUNTER, 1	
MOVLW 1	BCF PORTB, 5	
MOVWF TRISB	BTFSC COUNTER, 1	
BCF STATUS, RPO ; back to bank 0	BSF PORTB, 5	
	BTFSS COUNTER, 2	
COUNTER EQU 20	BCF PORTB, 6	
CLRF COUNTER ; zero the counter	BTFSC COUNTER, 2	
BCF PORTB, 4 ; zero the LEDs	BSF PORTB, 6	
BCF PORTB, 5	BTFSS COUNTER, 3	
BCF PORTB, 6	BCF PORTB, 7	
BCF PORTB, 7	BTFSC COUNTER, 3	
	BSF PORTB, 7	
BSF OPTION REG, INTEDG ; interrupt on		
_ ; positive	BCF INTCON, INTF	; clear the
BCF INTCON, INTF ; clear interrupt flag		; appropriate flag
BSF INTCON, INTE ; mask for external	RETFIE	; this also set global
; interrupts		; interrupt enable
BSF INTCON, GIE ; enable interrupts		
↓	END	


https://phanderson.com/PIC/16C84/interrupts/interrupt_1.html

EEPROM: Basics

- The EEPROM is nonvolatile and is particularly useful for holding data variables that can be changed but are likely to be needed for the medium to long term.

- Examples include TV tuner settings, phone numbers stored in a cell phone or calibration settings on a measuring instrument.

- In the 16F84A ,the EEPROM is not placed in the main data memory map. Instead it is addressed through the EEADR register and data is transferred through EEDATA register. These are both SFRs

PIC16F84A devices have 64

bytes of data EEPROM with an

	REGISTER	R FILE MAP	
Addre	ss	F	ile Address
00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h
01h	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	_	—	87h
08h	EEDATA	EECON1	88h
09h	EEADR	EECON2 ⁽¹⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
4Fh	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0	CFh
4Fn 50h			DOh
7Fh	Pank 0		FFh
	Bank 0	Bank 1	

File

- The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write).
- EEPROM is addressed through the EEADR register and data is transferred through the EEDATA register.
- Reading from EEPROM is a simple process but writing to it is not. The latter takes significant time in electronic terms (i.e. milliseconds) and care must be taken to avoid accidental writes. A set of controls is therefore required to start the process and (for write) to detect when it is ended.
- □ These are found in the bits of the EECON1 register;
- To read an EEPROM location, the required address must be placed in EEADR and the RD bit set in EECON1.
- □ The data in that memory location is then copied to the EEDATA register and can be read immediately.

EECON1

REGISTER 3-1:	EECON1 F	REGISTER	(ADDRES	S 88h)				
	U-0	U-0	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
	—	—	—	EEIF	WRERR	WREN	WR	RD
	bit 7							bit 0
L# 7 5		ente de De e	d a a 101					
bit 7-5	Unimplem	ented: Rea	d as 0					
bit 4	EEIF: EEP	ROM Write	Operation In	terrupt Flag	bit			
				•	eared in soft			
	0 = The wr	ite operatior	n is not comp	plete or has	not been sta	rted		
bit 3	WRERR: E	EPROM Er	ror Flag bit					
	1 = A write	operation is	prematurel	y terminated	1			
			-	Reset durin	g normal op	eration)		
	0 = The wr	ite operatior	n completed					
bit 2	WREN: EE	PROM Writ	e Enable bit					
	1 = Allows	write cycles						
	o = Inhibits	write to the	EEPROM					
bit 1	 WR: Write Control bit 1 = Initiates a write cycle. The bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software. 0 = Write cycle to the EEPROM is complete RD: Read Control bit 							
						ne WR bit		
bit 0								
				is cleared ir	hardware.	The RD bit o	an only be s	set (not
) in software						
	0 = Does n	ot initiate ar	EEPROM I	read				

Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore, it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

BCF	STATUS, RP0	; Bank 0
MOVLW	CONFIG_ADDR	• • •
MOVWF	EEADR	; Address to read
BSF	STATUS, RP0	; Bank 1
BSF	EECON1, RD	; EE Read
BCF	STATUS, RP0	; Bank 0
MOVF	EEDATA, W	; $W = EEDATA$
MOVWF	PORTB	; PORTB = EEDATA

Writing to the EEPROM Data Memory

REGISTER FILE MAP

File Address File Address					
00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h		
01h	TMR0	OPTION_REG	81h		
02h	PCL	PCL	82h		
03h	STATUS	STATUS	83h		
04h	FSR	FSR	84h		
05h	PORTA	TRISA	85h		
06h	PORTB	TRISB	86h		
07h	—	—	87h		
08h	EEDATA	EECON1	88h		
09h	EEADR	EECON2 ⁽¹⁾	89h		
0Ah	PCLATH	PCLATH	8Ah		
0Bh	INTCON	INTCON	8Bh		
0Ch	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0	8Ch		
4Fh 50h			CFh D0h		
7Fh			FFh		
	Bank 0	Bank 1			

- To write to an EEPROM location, the required data and address must be placed in EEDATA and EEADR respectively.
- The write process is enabled by the WREN (Write Enable) bit being set high, followed by the bytes 55H followed by AAH being sent to the EECON2 register.
- The built-in requirement for these codes helps to ensure that accidental writes do not take place, for example on power-up or -down.
- The WR bit is then set high and writing actually commences.
- The write completion is signalled by the setting of bit EEIF in EECON1.
- EECON2 is not a physical register.

Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

BSF	STATUS, RPO	; Bank 1
BCF	INTCON, GIE	; Disable INTs.
BSF	EECON1, WREN	; Enable Write
MOVLW	55h ;	
MOVWF	EECON2	; Write 55h
MOVLW	AAh ;	
MOVWF	EECON2	; Write AAh
BSF	EECON1,WR	; Set WR bit begin write
BSF	INTCON, GIE	; Enable INTs

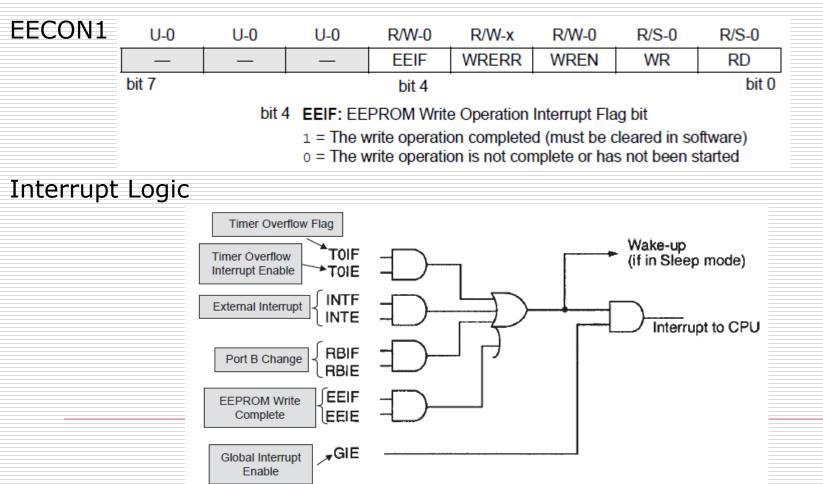
The write will not initiate if the above sequence is not exactly followed (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment.

Writing to the EEPROM Data Memory

WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM. The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

BSF	STATUS, RPO	; Bank 1
BCF	INTCON, GIE	; Disable INTs.
BSF	EECON1, WREN	; Enable Write
MOVLW	55h ;	
MOVWF	EECON2	; Write 55h
MOVLW	AAh ;	
MOVWF	EECON2	; Write AAh
BSF	EECON1,WR	; Set WR bit begin write
BSF	INTCON, GIE	; Enable INTs

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. EEIF must be cleared by software.


Example

□ Write h'E3' to location 0X03 of EEPROM.

MOVLW	0X03	
MOVWF	EEADR	
MOVLW	h'E3'	
MOVWF	EEDATA	
BSF	STATUS, RPO	; Bank 1
BCF	INTCON, GIE	; Disable INTs.
BSF	EECON1, WREN	; Enable Write
MOVLW	55h ;	
MOVWF	EECON2	; Write 55h
MOVLW	AAh ;	
MOVWF	EECON2	; Write AAh
BSF	EECON1,WR	; Set WR bit begin write
BSF	INTCON, GIE	; Enable INTs

DATA EEPROM INTERRUPT

□ At the completion of a data EEPROM write cycle, flag bit EEIF (EECON1<4>) will be set. The interrupt can be enabled/disabled by setting/clearing enable bit EEIE (INTCON<6>)

INTCON REGISTER (ADDRESS 0Bh, 8Bh)

bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-x GIE EEIE TOIE INTE RBIE TOIF RBIF INTF bit 7 bit 0 GIE: Global Interrupt Enable bit 1 = Enables all unmasked interrupts o = Disables all interrupts EEIE: EE Write Complete Interrupt Enable bit 1 = Enables the EE Write Complete interrupts o = Disables the EE Write Complete interrupt TOIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt o = Disables the TMR0 interrupt INTE: RB0/INT External Interrupt Enable bit 1 = Enables the RB0/INT external interrupt o = Disables the RB0/INT external interrupt RBIE: RB Port Change Interrupt Enable bit 1 = Enables the RB port change interrupt o = Disables the RB port change interrupt T0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software) o = TMR0 register did not overflow INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) o = The RB0/INT external interrupt did not occur **RBIF:** RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

REGISTER FILE MAP -PIC16F84A

	File Addre	ss	F	ile Address			
	00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h			
	01h	TMR0	OPTION REG	81h			
	02h	PCL	PCL	82h			
	03h	STATUS	STATUS	83h			
	04h	FSR	FSR	84h			
	05h	PORTA	TRISA	85h			
	06h	PORTB	TRISB	86h			
	07h	_	_	87h			
_	08h	EEDATA	EECON1	88h			
	09h	EEADR	EECON2 ⁽¹⁾	89h			
	0Ah	PCLATH	PCLATH	8Ah			
	0Bh	INTCON	INTCON	8Bh			
_	0Ch			8Ch			
		68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0				
	4Fh 50h			CFh D0h			
	nuc			DUN			
_							
_				4			
-	7Fh	Bank 0		FFh			
	_		Bank 1				
	 Unimplemented data memory location, read as '0'. Note 1: Not a physical register. 						

Example: What	does this
program do?	movlw 0xAA; movwf EECON2;
list p=16f84a; include "p16f84a.inc"	bsf EECON1,WR; bcf STATUS,RP0; bsf INTCON,GIE;
address1equ0x00; EEPROM address 1readAddress equ0x23; EEPROM address readvalue1equ.12;	wait_write1 btfss PORTB,0; goto wait_write1;
org 0;	; Read from EEPROM
goto main;	movlw readAddress;
org 0x04;	movwf EEADR;
goto eeprom_isr;	bsf STATUS,RP0;
main;	bsi STATUS,RPU,
bsf STATUS,RP0;	bcf EECON1,WREN;
clrf TRISB;	bsf EECON1,RD;
bcf STATUS,RP0;	bcf STATUS,RP0;
clrf PORTB;	movf EEDATA,0;
movlw address1;	loop;
movwf EEADR;	goto loop;
movlw value1;	eeprom_isr
movwf EEDATA;	bsf PORTB,0;
bsf STATUS,RP0;	bsf STATUS,RP0;
bcf INTCON,GIE;	bcf EECON1,EEIF;
bsf INTCON,EEIE;	bcf STATUS,RP0;
bsf EECON1,WREN;	retfie;
movlw 0x55; movwf EECON2;	end

The Watchdog Timer

- The primary function of the Watchdog Timer (WDT) is
 - to reset the microcontroller, in the event of a software malfunction, by resetting the device if it has not been cleared in software.
 - to wake the device from Sleep mode.
- The Watchdog Timer is a free running On-Chip RC Oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin.
- That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.
- During normal operation, a WDT time-out generates a device RESET.
- □ If the device is in SLEEP mode, a WDT wake-up causes the device to wake-up and continue with normal operation.
- The WDT can be enabled by programming configuration bit WDTE as a '1' by using the relevant coniguration bit

___config _CP_OFF&_WDT_ON&_XT_OSC

	R/P-u	R/P-u	R/P-u	R/P-u	R/P-u										
	CP	PWRTE	WDTE	F0SC1	F0SC0										
	bit13											bit 2		bit0	
PIC16F84A CONFIGURATION WORD WDTE: Watchdog Timer Enable bit										nable bit					
										1 = WD)T enable	d			
												$0 = W\Gamma$)T disable	d	

WDT OPERATION

- □ When enabled, the WDT will increment until it overflows or "times out".
- □ A WDT time-out will force a device Reset, except during Sleep modes.
- To prevent a WDT Time-out Reset, the user must periodically clear the Watchdog Timer using the instructions, CLRWDT.
- If the WDT times out during Sleep modes, the device will wake-up and continue code execution from where the CLRWDT instruction was executed.
- In either case, the TO_bit (4_bit of STATUS register) will be set to indicate that the device Reset or wake-up event was due to a WDT time-out.
- □ If the WDT wakes the CPU from Sleep mode, the SLEEP status bit (bit_3 of status register) will also be set to indicate that the device was previously in a Power-Saving mode

STATUS REGISTER

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP	RP1	RP0	TO	PD	Z	DC	С	
bit 7		•					bit 0	
Image: Section 1 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2	bit 4	TO: Time-out bit 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred						
	bit 3	PD: Powe	r-down bit					
				r by the CLR he SLEEP in		ion		

WDT PERIOD

- □ The WDT has a nominal time-out period of 18 ms, (with no prescaler).
- The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs).
- □ If longer time-out periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION_REG register. Thus, time-out periods up to 2.3 seconds can be realized.
- The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if assigned to the WDT) and prevent it from timing out and generating a device RESET condition.
- □ The TO bit in the STATUS register will be cleared upon a WDT time-out.

For exp; 1/128 WDT_rate, time_out period= 128*18ms=2,3 second.

OPTION REGISTER (ADDRESS 81h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
Γ	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
	bit 7				•			bit 0

bit 3 PSA: Prescale	r Assignment bit
---------------------	------------------

bit 2-0

1 = Prescaler is assigned to the WDT

o = Prescaler is assigned to the Timer0 module

PS2:PS0: Prescaler Rate Select bits

Bit Value TMR0 Rate WDT Rate

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1:128	1:64
111	1:256	1 : 128

Example

Write a program to increment the value of PORTB from 00. Every 1152 ms, PORTB get started counting again from 00.