
MECE336 Microprocessors I
Sleep, Watchdog Timer,

EEPROM

Dr. Kurtuluş Erinç Akdoğan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

mailto:kurtuluserinc@cankaya.edu.tr

Sleep
 Sleep mode is an important way of saving power.

 The microcontroller can be put into this mode by executing the instruction SLEEP.

 SLEEP: Go into standby mode.

 Once in Sleep mode, the microcontroller almost goes into suspended animation.

 The clock oscillator is switched off,

 WDT is cleared,

 program execution is suspended,

 all ports retain their current
settings

 PD and TO bits in the Status
register are cleared and set
respectively.

 If enabled, the WDT continues
running.

 Under these conditions, power
consumption falls to a negligible
amount a typical value of 1 μA,
under specific ideal operating
conditions.

Status Register

Sleep: Awakening
 External reset through MCLR pin. While this causes a wake-up, it also resets the

microcontroller; therefore, its use seems limited to complete program restarts. It is possible,
however, to detect that the microcontroller has just been in Sleep mode, due to the state of
the PD pin in the Status register.

Sleep: Awakening
 WDT wake-up. WDT is blocked from causing a reset when in Sleep. Instead, on overflow it

just causes a wake-up from Sleep, and the microcontroller continues program execution from
the instruction following the Sleep mode.

 Occurrence of interrupt. If any interrupt was enabled prior to going into SLEEP, upon
receipt of interrupt input, wake-up from Sleep occurs regardless of the state of the Global
Interrupt Enable. Timer 0 cannot, however, generate an interrupt, as the internal clock is
disabled.

Example

 Write a program that counts the number of positive
transitions on input RB.0/INT and displays the current
"count" on four LEDs on outputs RB.4 - RB.7.

 Note that the INTEDG bit in the OPTION_REG may be set
such that the external interrupt occurs on the positive
edge of a signal on RB.0

INTCON REGISTER
(ADDRESS 0Bh, 8Bh)

REGISTER FILE MAP -

PIC16F84A

REGISTER FILE MAP -

PIC16F84AExternal interrupts and
OPTION register

For external interrupts,

 1. RB0 must be input.

 2. INTE must be 1.

 3. Bit_6 of the OPTION register (INTEDG) is the
interrupt edge select bit;

 If INTEDG= 1, interrupt occurs rising edge of the
signal.

 If INTEDG= 0, interrupt occurs falling edge of the
signal.

 Depends on the hardware, INTEDG must be 0 or 1.

LIST P=16F84A

INCLUDE "P16f84A.INC"

__config _CP_OFF&_WDT_OFF&_XT_OSC

ORG 00

GOTO MAIN

ORG 04

GOTO INT_SERV

MAIN:

BSF STATUS, RP0 ; bank 1

MOVLW 1

MOVWF TRISB

BCF STATUS, RP0 ; back to bank 0

COUNTER EQU 20

CLRF COUNTER ; zero the counter

BCF PORTB, 4 ; zero the LEDs

BCF PORTB, 5

BCF PORTB, 6

BCF PORTB, 7

BSF OPTION_REG, INTEDG ; interrupt on

; positive

BCF INTCON, INTF ; clear interrupt flag

BSF INTCON, INTE ; mask for external

; interrupts

BSF INTCON, GIE ; enable interrupts

PT1: SLEEP

GOTO PT1

INT_SERV:

INCF COUNTER, F

BTFSS COUNTER, 0 ; light the

; appropriate LEDs

BCF PORTB, 4

BTFSC COUNTER, 0

BSF PORTB, 4

BTFSS COUNTER, 1

BCF PORTB, 5

BTFSC COUNTER, 1

BSF PORTB, 5

BTFSS COUNTER, 2

BCF PORTB, 6

BTFSC COUNTER, 2

BSF PORTB, 6

BTFSS COUNTER, 3

BCF PORTB, 7

BTFSC COUNTER, 3

BSF PORTB, 7

BCF INTCON, INTF ; clear the

; appropriate flag

RETFIE ; this also set global

; interrupt enable

END

https://phanderson.com/PIC/16C84/interrupts/interrupt_1.html

https://phanderson.com/PIC/16C84/interrupts/interrupt_1.html

EEPROM: Basics
- The EEPROM is non-

volatile and is particularly

useful for holding data

variables that can be

changed but are likely to

be needed for the

medium to long term.

- Examples include TV

tuner settings, phone

numbers stored in a cell

phone or calibration

settings on a measuring

instrument.

- In the 16F84A ,the

EEPROM is not placed in

the main data memory

map. Instead it is

addressed through

the EEADR register and

data is transferred

through EEDATA register.

These are both SFRs

PIC16F84A devices have 64
bytes of data EEPROM with an
address range from 00h to 3Fh.

 The EEPROM data memory allows byte read and
write. A byte write automatically erases the
location and writes the new data (erase before
write).

 EEPROM is addressed through the EEADR register
and data is transferred through the EEDATA
register.

 Reading from EEPROM is a simple process but
writing to it is not. The latter takes significant time
in electronic terms (i.e. milliseconds) and care
must be taken to avoid accidental writes. A set of
controls is therefore required to start the process
and (for write) to detect when it is ended.

 These are found in the bits of the EECON1 register;

 To read an EEPROM location, the required address
must be placed in EEADR and the RD bit set in
EECON1.

 The data in that memory location is then copied to
the EEDATA register and can be read immediately.

REGISTER FILE MAP

EECON1

Reading the EEPROM Data Memory
 To read a data memory location, the user must write the address to the

EEADR register and then set control bit RD (EECON1<0>). The data is
available, in the very next cycle, in the EEDATA register; therefore, it can
be read in the next instruction. EEDATA will hold this value until another
read or until it is written to by the user (during a write operation).

BCF STATUS, RP0 ; Bank 0

MOVLW CONFIG_ADDR ;

MOVWF EEADR ; Address to read

BSF STATUS, RP0 ; Bank 1

BSF EECON1, RD ; EE Read

BCF STATUS, RP0 ; Bank 0

MOVF EEDATA, W ; W = EEDATA

MOVWF PORTB ; PORTB = EEDATA

Writing to the
EEPROM Data Memory

 To write to an EEPROM location, the required data
and address must be placed in EEDATA and EEADR
respectively.

 The write process is enabled by the WREN (Write
Enable) bit being set high, followed by the bytes
55H followed by AAH being sent to the EECON2
register.

 The built-in requirement for these codes helps to
ensure that accidental writes do not take place, for
example on power-up or -down.

 The WR bit is then set high and writing actually
commences.

 The write completion is signalled by the setting of
bit EEIF in EECON1.

 EECON2 is not a physical register.

REGISTER FILE MAP

Writing to the EEPROM Data Memory
 To write an EEPROM data location, the user must first write the address

to the EEADR register and the data to the EEDATA register. Then the
user must follow a specific sequence to initiate the write for each byte.

 The write will not initiate if the above sequence is not exactly followed
(write 55h to EECON2, write AAh to EECON2, then set WR bit) for each
byte. We strongly recommend that interrupts be disabled during this
code segment.

BSF STATUS, RP0 ; Bank 1
BCF INTCON, GIE ; Disable INTs.
BSF EECON1, WREN ; Enable Write
MOVLW 55h ;
MOVWF EECON2 ; Write 55h
MOVLW AAh ;
MOVWF EECON2 ; Write AAh
BSF EECON1,WR ; Set WR bit begin write
BSF INTCON, GIE ; Enable INTs

Writing to the EEPROM Data Memory
 WREN bit in EECON1 must be set to enable write. This mechanism

prevents accidental writes to data EEPROM. The user should keep the
WREN bit clear at all times, except when updating EEPROM. The WREN
bit is not cleared by hardware.

 At the completion of the write cycle, the WR bit is cleared in hardware
and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can
either enable this interrupt or poll this bit. EEIF must be cleared by
software.

BSF STATUS, RP0 ; Bank 1
BCF INTCON, GIE ; Disable INTs.
BSF EECON1, WREN ; Enable Write
MOVLW 55h ;
MOVWF EECON2 ; Write 55h
MOVLW AAh ;
MOVWF EECON2 ; Write AAh
BSF EECON1,WR ; Set WR bit begin write
BSF INTCON, GIE ; Enable INTs

Example

 Write h’E3’ to location 0X03 of EEPROM.

MOVLW 0X03
MOVWF EEADR
MOVLW h’E3’
MOVWF EEDATA
BSF STATUS, RP0 ; Bank 1
BCF INTCON, GIE ; Disable INTs.
BSF EECON1, WREN ; Enable Write
MOVLW 55h ;
MOVWF EECON2 ; Write 55h
MOVLW AAh ;
MOVWF EECON2 ; Write AAh
BSF EECON1,WR ; Set WR bit begin write
BSF INTCON, GIE ; Enable INTs

DATA EEPROM INTERRUPT
 At the completion of a data EEPROM write cycle, flag bit EEIF (EECON1<4>) will be set. The

interrupt can be enabled/disabled by setting/clearing enable bit EEIE (INTCON<6>)

EECON1

Interrupt Logic

INTCON REGISTER
(ADDRESS 0Bh, 8Bh)

REGISTER FILE MAP -

PIC16F84A

Example: What does this
program do?

list p=16f84a;
include "p16f84a.inc"

address1 equ 0x00; EEPROM address 1
readAddress equ 0x23; EEPROM address read
value1 equ .12;

org 0;
goto main;
org 0x04;
goto eeprom_isr;

main;
bsf STATUS,RP0;
clrf TRISB;
bcf STATUS,RP0;
clrf PORTB;

movlw address1;
movwf EEADR;
movlw value1;
movwf EEDATA;

bsf STATUS,RP0;
bcf INTCON,GIE;
bsf INTCON,EEIE;
bsf EECON1,WREN;

movlw 0x55;
movwf EECON2;

movlw 0xAA;
movwf EECON2;
bsf EECON1,WR;
bcf STATUS,RP0;
bsf INTCON,GIE;

wait_write1
btfss PORTB,0;
goto wait_write1;

; Read from EEPROM
movlw readAddress;
movwf EEADR;
bsf STATUS,RP0;
bcf EECON1,WREN;
bsf EECON1,RD;
bcf STATUS,RP0;
movf EEDATA,0;

loop;
goto loop;

eeprom_isr
bsf PORTB,0;
bsf STATUS,RP0;
bcf EECON1,EEIF;
bcf STATUS,RP0;
retfie;

end

The Watchdog Timer
 The primary function of the Watchdog Timer (WDT) is

 to reset the microcontroller, in the event of a software malfunction, by resetting the
device if it has not been cleared in software.

 to wake the device from Sleep mode.

 The Watchdog Timer is a free running On-Chip RC Oscillator which does not require any
external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN
pin.

 That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT
pins of the device has been stopped, for example, by execution of a SLEEP instruction.

 During normal operation, a WDT time-out generates a device RESET.

 If the device is in SLEEP mode, a WDT wake-up causes the device to wake-up and continue
with normal operation.

 The WDT can be enabled by programming configuration bit WDTE as a ‘1‘ by using the
relevant coniguration bit

__config _CP_OFF&_WDT_ON&_XT_OSC

PIC16F84A CONFIGURATION WORD

WDT OPERATION
 When enabled, the WDT will increment until it overflows or “times out”.

 A WDT time-out will force a device Reset, except during Sleep modes.

 To prevent a WDT Time-out Reset, the user must periodically clear the Watchdog
Timer using the instructions, CLRWDT.

 If the WDT times out during Sleep modes, the device will wake-up and continue
code execution from where the CLRWDT instruction was executed.

 In either case, the TO_bit (4_bit of STATUS register) will be set to indicate that
the device Reset or wake-up event was due to a WDT time-out.

 If the WDT wakes the CPU from Sleep mode, the SLEEP status bit (bit_3 of status
register) will also be set to indicate that the device was previously in a Power-
Saving mode

STATUS REGISTER

WDT PERIOD
 The WDT has a nominal time-out period of 18 ms, (with no prescaler).

 The time-out periods vary with temperature, VDD and process variations from
part to part (see DC specs).

 If longer time-out periods are desired, a prescaler with a division ratio of up to
1:128 can be assigned to the WDT under software control by writing to the
OPTION_REG register. Thus, time-out periods up to 2.3 seconds can be realized.

 The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if assigned
to the WDT) and prevent it from timing out and generating a device RESET
condition.

 The TO bit in the STATUS register will be cleared upon a WDT time-out.

OPTION REGISTER (ADDRESS 81h)

For exp; 1/128 WDT_rate,
time_out period= 128*18ms=2,3 second.

Example

 Write a program to increment the value of PORTB
from 00. Every 1152 ms, PORTB get started counting
again from 00.

