
MECE336 Microprocessors I
Programming

Dr. Kurtuluş Erinç Akdoğan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

mailto:kurtuluserinc@cankaya.edu.tr


CONTENT

 In this lecture we will learn about:

 how to visualise a program, and represent 
it diagrammatically;

 how to use program branching



A Very First Program

 The program starts with a header made up of five comment lines, each starting with a 
semicolon.

 org directive is used to define the start address as Reset Vector address (when there are 
program blocks at different locations, start address is controlled by the programmer)

 The program which follows uses only three instructions. It first clears the W register. 

 The following instruction has been given the label loop. It adds the number 8, embedded into 
the instruction as a ‘literal’ value, to the Wregister. 

 The following goto instruction, using the label loop as its operand, causes the program to 
return to the add instruction, which it does repeatedly.

 The W register therefore repeatedly increments by the value 8. 

 The end of the program is defined with an end directive.



A larger program – using data 
memory and moving data

-The rule: 
xn = xn-1 + xn-2

0, 1, 1, 2, 3, 5, 8, 13, 
21, 34, ...
-Four memory locations 
are needed, three to 
hold the most recent
numbers in the series 
and one to hold 
temporary data.
- The memory map 
shows that memory
locations in the address 
range 0CH to 4FH are 
available. 
-In this program the 
locations from
20H to 23H have been 
arbitrarily chosen. 
-Labels corresponding 
to memory location 
addresses have been 
defined using the equ
directive, for example:
- Wherever the word 
fib0 is used after this 
line, itwill be replaced 
by the number 20H.



Basic Instructions: Move

 movwf f : This moves the contents of the W 
register to the memory location f.

 movf f,d : This instruction moves the contents 
of the memory location f to theWregister, if the 
d bit is set to 0; if it is set to 1 then the 
contents of f are just returned to f (but the Z
bit may still change).

 movlw k : This instruction moves the literal 
value k, an 8-bit number which accompanies
the instruction, into the W register.



A larger program – using data 
memory and moving data

-The program starts by preloading the three first 
numbers in the series, 0,1,1, into the reserved
memory locations. 
-Location fib0 is simply cleared using a clrf
instruction. 
-The value 1 is loaded into fib1 and fib2. 
-The number must first be moved into the
Wregister with a movlw instruction, before being 
transferred to the memory location with a movwf
instruction. 
- Starting at the label forward, the program 
starts calculating the next value in the series by
adding the two most recent numbers.
-The instruction set does not allow the direct 
addition of two memory locations. One location 
therefore, fib1, is moved first to the W register. 
This is done using a movf instruction, with the d
bit set to 0. 
-The W register is then added to fib2. Because 
the d bit is set to 0 again, the result is saved in 
the W register.
-The next instruction moves it to fibtemp. 
-The program then shuffles the numbers held in 
the memory locations, retaining the three most 
recent values and discarding the oldest. 
-Using a goto instruction, the program then loops 
back to forward, and starts to calculate a new 
member of the series.



Basic Instructions: 
Bit-wise Operations

 bcf f,b: Set bit b (between 0 and 7) in memory 
location f to logic 0. This is called clear.

 bsf f,b: Set bit b in memory location f to logic 1.



Status Register



Programming for a target piece of 
hardware – a simple datatransfer 
program

-This program just 
uses the Status 
register, Ports A 
and B, and
their control 
registers TRISA and 
TRISB. Labels for 
these are therefore 
defined, taking
memory addresses 
directly from the 
memory map
-The program starts 
with an initialisation
section
-As SFRs are placed 
in RAM memory bank 
1, it is necessary 
first of all to set bit 5 
of the Status register 
to 1.
-This is done in the 
first program line, 
labelled start, using 
the bsf instruction.



Programming for a target piece of 
hardware – a simple datatransfer 
program

-To be an output a 
port pin must have a 
0 in its corresponding
TRIS register bit. It 
must have a 1 for the 
bit to be an input. 
Therefore we must 
send the word 
00011000 to TRISA.
-A similar process is 
followed for setting up 
Port B.



The main idea – building 
structure into programs

 When we actually design a program, it is important to 
think about and plan its structure, before starting to 
write the code. 

 Otherwise it leads to unstructured ‘spaghetti’ 
programs ie code which has no structure, with 
branches going anywhere, and which is 
incomprehensible to any but the programmer, and 
incomprehensible even to him/her after a week. 

 Therefore it is essential to plan a programme 
structure. 

 We must consider means of representing the program 
diagrammatically. 



Flow Charts: Components

 Shown as oval or rounded rectangle

 Represents the start or end of a process

 Example content: Start, End

 Shown as rectangle

 Used to show that some operation is

 performed

 Example: "Add 1 to X", "Save X“

 Shown as diamond

 Represents a true/false (Yes/No) decision

 Example: "Is X > 0?"



Flow Charts: Components

 Shown as a parallelogram

 Represents receiving data, displaying data

 Examples: Get X from the user, display X

 Shown as rectangle with double lines

 Represents a complex processing step

 with a separate owchart

 Example: Subroutine

 Arrow from one symbol to another symbol

 Represents that control passes to the

 symbol the arrow points to



A Refrigerator Controller

 The user has a single control, an adjustable 
potentiometer that allows him/her to set a 
desired temperature.

 Within the fridge there is a temperature 
sensor. 

 Temperature is controlled by switching the
compressor on or off – the temperature will 
fall when it is running. 

 The program reads both the actual and 
demand temperatures and determines which 
is higher. 

 If it is the actual temperature, then the 
compressor is switched on. 

 If the difference between the two is very 
great, then an alarm will sound.



 The flow diagram shows this action, using just 
the two symbols. 

 Notice how each diamond decision symbol 
contains a question within it with a yes/no 
answer. 

 Its two exit points then correspond to the two 
possible answers. 

 It can be seen that this example program will 
loop indefinitely. 

 This is a common embedded system program 
structure and is sometimes called a ‘super 
loop’.



Conditional branching and 
working with bits

 One of the most important features of any 
microprocessor or microcontroller program 
is its ability to make ‘decisions’, i.e. to act 
differently according to the state of logical 
variables.

 Microprocessors generally have within 
their instruction sets a number of 
instructions which allow them to test a 
particular bit, and 
 either continue program execution if a condition is 

not met 

 or branch to another part of the program if it is. 

 These variables are often bit values in 
condition code or Status registers.



Conditional branching and 
working with bits

 The PIC 16 Series microcontrollers are a little 
unusual when it comes to conditional branching 
as they do not have branch instructions as such. 

 They have instead four conditional ‘skip’ 
instructions. 

 These test for a certain condition, skipping just 
one instruction if the condition is met and 
continuing normal program execution if it is not. 

 The most versatile and generalpurpose of these 
are the instructions:

 btfsc f,b: tests bit b in memory location f and 
skips just one instruction if the bit is clear (i.e. at 
Logic 0). 

 btfss f,b: does a similar thing but skips if the 
tested bit is set (i.e. at Logic 1).



Example: Condition

 Port A input goes low when the 
button is pressed.

 The program needs to ‘set’ the 
output bit (to light the LED) if the 
input is low, and ‘clear’ it if it is 
high.

 This implies a selection process –
in a high-level language we might 
call this an ‘if…else’ structure. 

 The simple skip instruction is not 
able to do this on its own.

 One way to do this is to ‘preset’ 
the output bit with one value and 
then change it if we find it has 
been set wrong.



4 more Arithmetic Instructions

 ADDWF fileReg, d 

 Add the contents of WREG and a file register 

 Destination, d 

 If d=0, result is placed in WREG 

 If d=1, result is placed in file register

 SUBWF fileReg, d 

 Subtracts W content from f register.

 Destination, d 

 If d=0, result is placed in WREG 

 If d=1, result is placed in file register

 INCF fileReg, d 

 Increment the content of f register.

 Destination, d 

 If d=0, result is placed in WREG 

 If d=1, result is placed in file register

 DECF fileReg, d 

 Decrement the content of f register.

 Destination, d 

 If d=0, result is placed in WREG 

 If d=1, result is placed in file register

If a subtract occurs and the result is 
positive, then the Carry bit is ‘set’. If 
the result is negative, then the Carry 
bit is ‘clear’.



Fibonnacci Program 
Extended Version

-A counter has been included to show how many 
numbers in the series have been calculated. 
-The program tests for range overflow by checking the 
Carry bit after each addition. 
-When the 8-bit range is exceeded, it reverses the 
series by subtracting. 
-You will notice that c and z are defined as labels in the 
opening equates section.
-The program starts as before by preloading the first 
three numbers in the series into the memory store. 
-It starts moving up the series from the label forward. 
-The two most recent numbers are added and the 
Carry bit then checked. 
-If it is set, the 8-bit range has been exceeded and the 
program will need to reverse. 
-Assuming Carry was not set, the program then 
increments the counter and shuffles the numbers in 
the memory store, discarding the oldest. 
-The program then loops up to forward. 
-If, however, the Carry had been set, the program 
branches to reverse. Now it works down the series by
subtraction. 
-It tests the counter number to determine when it 
should return to forward.



More Instructions: Rotate

 RLF fileReg, d 

 Rotate left the content of memory location f using carry. 

 Destination, d 

 If d=0, result is placed in WREG 

 If d=1, result is placed in file register

 RRF fileReg, d 

 Rotate right the content of memory location f using carry. 

 Destination, d 

 If d=0, result is placed in WREG 

 If d=1, result is placed in file register

 These commands will move a bit in a register one place to the left (RLF) or the 
right (RRF) in a register. For example, if we had 00000001 and we used RLF, 
then we would have 00000010. Now, what happens if we have 10000000 and 
carried out the RLF instruction? Well, the 1 will be placed in the carry flag. If we 
carried out the RLF instruction again, the 1 will reappear back at the beginning. 
The same happens, but in reverse, for the RRF instruction. The example below 
demonstrates this for the RLF instruction, where I have shown the 8 bits of a 
register, and the carry flag :


