MECE336 Microprocessors I
Programming

Dr. Kurtulus Erinc Akdogan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

¢ CANKAYA UNIVERSITES]
=/ MEKATRONIK MUHENDISLIGI BOLUMU

mailto:kurtuluserinc@cankaya.edu.tr

CONTENT

In this lecture we will learn about:

B how to visualise a program, and represent
it diagrammatically;

B how to use program branching

A Very First Program

The program starts with a header made up of five comment lines, each starting with a
semicolon.

org directive is used to define the start address as Reset Vector address (when there are
program blocks at different locations, start address is controlled by the programmer)

The program which follows uses only three instructions. It first clears the W register.

The following instruction has been given the label loop. It adds the number 8, embedded into
the instruction as a ‘literal’ value, to the Wregister.

The following goto instruction, using the label loop as its operand, causes the program to
return to the add instruction, which it does repeatedly.

The W register therefore repeatedly increments by the value 8.

The end of the program is defined with an end directive.

R R E R R E R R E R R R R R R R R E R R R E R R R E R E R R R R R E R R R R R E R E R E R R E R R R
;Very first program

;This program repeatedly adds a number to the Working Register,
;TIW 1.11.08 Tested 1.11.08

vk kw ok w ok kwhkw ok kohkw ok hkw ko rhkw kb hkw bk w ok kb bk hkw ok hk bk dk ok dr ok w ok wok ko okw ok w ok ok koW ok bk
r

; use the Qg directive to force program start at reset wvector

0rd oo

;program starts here
clrw jolear W reglster

loop addlw 08 jadd the number 8 to W reglster
gota loop

end ishow end of program with "end" directive

A larger program - using data
memory and moving data
g

-The rule:
X, =

21, 34, ...

and one to hold
temporary data.

available.

locations from

File Address Fi'eAddfeSﬁ;x****‘*‘x****‘*w*****w*****w*****w*****w**k***‘k*k***‘******‘******‘x******x*****x*
00h | Indirect addr.(") | indirectaddr® | 80h . pino simole
Xp-1 + Xp-2 01h TMRO OPTION_REG [8th ;In a Fibonacci series each number is the sum of the two previous ones,
0, 1, 1, 2, 3, 5, 8, 13, 02h PCL PCL 8h ;e.g. 0,1,1,2,3,5,8,13,21....
03h STATUS STATUS gsh +This program calculates Fibonacci numbers within an 8-bit range.
preg g
: 04h FSR FSR gap Program intended for simulation only, hence no input/output.
-Four memory locations o5h PORTA TRISA gsn FTIW 6.11.08 Tested by simulation 6.11.08
are needed three to ’-‘x‘k'.\\"k'k‘k‘x‘k:\\"k'Jc'kx‘k'.\\'*'Jc'kx'k)\"k'Jc'kx'k)\"k'Jc'kx'k)\"A"Jc'kx'k)\"k*'k‘k'k)\"k*'k‘k‘)r‘A"k*'k‘k‘)r‘A".\k"k'k*x*'k‘k'k*x*'k‘k'}c*x*
7 06h PORTB TRISB 86h
hold the most recent g;: EEI;ATA EE(;)N1 2;: ;these memory locations hold the Fibonacci series
numbers In the Series a fib0 egu 20 ; lowest number
09h EEADR EECON2(") 8dsh . . .
fibl equ 21 ;middle number
OAn PCLATH PCLATH BAN £ip2 equ 22 ;highest number
0Bh INTCON INTCON 88h fibtemp equ 23 ;temporary location for newest number
0oCh 8Ch
- The memory map org 00
shows that memory 68 ;preload initial values
: : clrf £ib0 ;clear location fib0
locations in the address Pupose | (acecbses) S fosear —oeatton LBY
Registers in Bank 0 movliw 1 ;move value 1 to W register
range OCH to 4FH are (SRAM) movwf fibl ;move W register to fibl
movwf fib2 ;move W register to fib2
'In thIS program the forward movE f£ibl,0 ;move the contents of fibl to W register
ddw i 0 radd W reg to fi
gn) ioivi f?giér:p 'mjjenhgignzﬁb;tl“bfz‘ormed to fibtemp
50h DOh W - /move : -a T - €1
20H tO 23H have been ;now shuffle numbers held, discarding the oldest (ie fib0)
arb|trar|]y Chosen_ \ movE f£ibl,0 ;move fibl to W register
: &x movwt fib0 ;move W register to f£ib0
-Labels CorreSpo_ndmg movf fib2,0 jmove fib2 to W register
to memory location -~ - movwf fibl ;move W register to fibl
addresses have been Bank 0 Bank 1 movf fibtemp,0 ;move fibtemp to W register
- . [Unimplemented data memory location, read as '0". movwf fib2 ;move W register to fib2
deﬂned USIng the equ Note 1: Nota physical register. goto forward
directive, for example: end
- Wherever the word
fibO is used after this ul ald equ 20 lowest number

line, itwill be replaced
by the nhumber 20H.

Basic Instructions: Move

L

Ll

movwf f : This moves the contents of the W
register to the memory location f.

movf f,d : This instruction moves the contents
of the memory location f to theWregister, if the
d bit is set to O; if it is set to 1 then the
contents of f are just returned to f (but the Z
bit may still change).

movlw k : This instruction moves the literal
value k, an 8-bit number which accompanies
the instruction, into the W register.

A larger program - using data
memory and moving data

_The program Starts by preloading the three first ’.x‘il(-***‘*a‘r*****w*****w‘*’****w‘*’*k**w*****w**k***‘k*k***‘**k*********r*****r*****x*
. . . ;Fibo simple
numbers in the series, 0,1,1, into the reserved -

;In a Fibonacci series each number is the sum of the two previous ones,

memory locations. je.g. 0,1,1,2,3,5,8,13,21.... . - |

-Location ib0 is simply cleared using a clff 02 FIeS ealeuietes fenael muhers uibis o Sl sanse
instruction. ;TIW 6.11.08 Tested by simulation 6.11.08
—The Value 1 is Ioaded into fibl and fibz. ’-x‘k:\k"k'k‘kx‘k:\k“k'}c'kx‘k'.\\"k'Jc'kx'k)\"k'Jc'kx'k)\"k'k'kx'k)\"}\"Jc'kx'k)\"k'k'k‘k'k)\"k*'k‘k‘x‘A"}\'*'k‘k‘k‘A".\k"k'k*x*'k‘k'k*x*'k‘k'}c‘kx*
-The number must first be moved into the ;these memory locations hold the Fibonacci series

Wregister with a movlw instruction, before being £'°? eau 20 ;lowest number

fibl equ 21 ;middle number

transferred to the memory location with a movwf . ,> .. 22 (highest number

instruction, fibtemp equ 23 ;temporary location for newest number
- Starting at the label forward, the program org 00

starts calculating the next value in the series by :prelocad initial values

adding the two most recent numbers. clrf £ib0 jclear location £ib0
: . . movliw 1 ;move value 1 to W register
-The instruction set does not allow the direct movwf fibl ;move W register to fibl
addition of two memory locations. One location movwE fib jmove Woregister to fib2
therefore, fibl, iS moved ﬁrSt to the W regiSter- :forward movE f£ibl,0 ;move the contents of fibl to W register
This is done using a movf instruction, with the d addwf £ib2,0 ;add W reg to fib2 .
blt set to 0 movwf fibtemp ;move new number formed to fibtemp
- - - ;now shuffle numbers held, discarding the oldest (ie fib0)
-The W register is then added to fib2. Because movf £ibl,0 jmove fibl to W register
the d bit is set to 0 again, the result is saved in povir Th move ;igigijt;ﬂég{i:i
the W register. movwE fibl ;jmove W register to fibl
-The next instruction moves it to fibtemp. movf fibtemp, 0 jmove fibtemp to W register
. movwf fib2 ;move W register to fib2
-The program then shuffles the numbers held in goto forward
the memory locations, retaining the three most end

recent values and discarding the oldest.

-Using a goto instruction, the program then loops
back to forward, and starts to calculate a new
member of the series.

Basic Instructions:
Bit-wise Operations

[0 bcf f,b: Set
location f to

[0 bsf f,b: Set

nit b (between 0 and 7) in memory
ogic 0. This is called clear.

bit b in memory location f to logic 1.

Status Register

RW-0 RW-0 RW-0 R R-1 RW-x RW-x RW-x
| mPp | AP | RPO | TO | PD | Z DC C
bit 7 bit 0

bit 7-6 Unimplemented: Maintain as ‘0’

bit 5 RPO: Registar Bank Select bits (used for direct addressing)
01 = Bank 1 (BCh - FFh)
0o = Bank O (00h - 7Fh)
bit 4 TO: Time-out bit
1= After power-up, CLEWDT instruction, or SLEEP instruction
0= AWDT time-out occurred
bit 3 PD: Power-down bit
1= After power-up or by the CLEWDT instruction
0 = By execution of the SLEEP instruction
bit 2 £: Zaro bit
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero
bit 1 DC: Digit Carry/borrow bit {(ADDWF, ADDLW, SUBLW, SUBWE instructions) (for borrow, the polarity
is reversed)
1 = A carmy-out from the 4th low order bit of the result occurred
0 = Mo carry-out from the 4th low order bit of the result
bit 0 C: Carry/borrow bit (ADDWF, AQDDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is
reversed)
1 = A carry-out from the Most Significant Bit of the result occurred
0 = Mo carry-out from the Most Significant Bit of the result occurred

Note: A subtraction is executed by adding the twos complement of the second operand.

For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order
bit of the source register.

Programming for a target piece of
hardware — a simple datatransfer
program

_Thls program Just File Address - o ' mFiIeAddress pEERE kG R kA khkkk kA khkhkh ok wkh Ak kR ok kk kA kR k kR ok F ok h Rk kR Rk ke h Rk w ok ok Rk
uses the Status 00h Indirect addr. Indirect addr. 80h s P ng=-pong data move
- 01h TMRO OPTION_REG | 81h :This program moves pu;—,:h button switch wvalues from Port A to the
register, Ports A 02h PCL PCL 82h :leds on Port B
and B, and 03h | STATUS | STATUS | 8h | .7y 21.2.05 Tested 22.2.05
their ContrOI 04: P’c:)i:rA T’;SIS 84h ;x*\l'r'k*:w'lrvr'k\l'r'ki"x'l'vr'k\l'r'ki".'c'l"yr'k\l'r'ki'x'Jr*ic\l':v:'ki'x'lr'.*kwl'r*i‘I'lr*W\l'r*)l'r'lr*w\l'r'k)l'r**x
. 05 A 85h .
registers TRISA and ’ . . e .
Is f 06h PORTB TRISB 86h ;Configuration Word: WDT off, power-up timer on,
ThRISB- Lal:]e S for g;: — —— 2;: ; code protect off, RC oscillator
t e_se are t _ere ore 0%h EEADR EECON2(") 8%h :) .
deﬁnedl takmg 0Ah PCLATH PCLATH 8Ah ii{»‘fCif}’ E:"'{S .
memory addresses 0Bh INTCON INTCON 8Bh | 2EHE e'i” g
B oCh 8Ch porta equ
directly from the trisa equ 05
memory map porth egu 06
68 et e - ne
-The program starts goneral | Mappod trisb equ oo
i initiali i Regist in Bank 0 4
W|th_an initialisation R org 00
section ;Initialise
-As SFRs are p|aced start bsf status, 5 ;select memory bank 1
; movlw B'00011000°"
in RAM memory bank : o e n e P ko ter
— 4Fh CFh movwf trisa ;port A according to above pattern
1, it is necessary 50h DOh movlw 00
first of all to set bit 5 K movwf trisb ;all port B bits output
of the Status register &x beof status, 5 ;select bank O
© 1 . . 7Fh j B ;The “main” program starts here
-This is done in the Bank 0 Bank 1 clrf porta ;jclear all bits in ports A
first program |ine, [Unimplemented data memory location, read as '0". loop movE porta, 0 ;move port A to W register
. Note 1: Nota physical register. wif rt ;move W reglste 0 port
labelled start, using = SRR 1;2‘;':‘1 P:;ﬁl‘“ jmove egister to po B
the bsf instruction. end

- start bsef 3,5; selectmemory bank 1

(=]

Programming for a target piece of
hardware — a simple datatransfer
program

_To be a n output a File Address File Address B i e e R e e R R

r
= 00h | Indirect addr.(") | Indirect addr.() | 80h ST - o .
port pin must have a ;Ping-pong data move
01h TMRO OPTION_REG | 81h ST e mrEeAEAr MaTe s r ewd b traliee Erem Bort B .
— . +This program moves push button switch values from Port A to the
F S E
0 in its corresponding o2n PoL PoL 2 | . lods on Port B
- - , =3 L -
TRIS register bit. It osh | STATUS STATUS | 8h | ;7gW 21.2.05 Tested 22.2.05
must have a 1 for the 04h FSR FSR 84h ;x*\l'r'k*-.-:-lr-.vr'k\l'r'ki".-r'l'vr'k\l'r'ki"x'l"yf'k\l'r'l:i'x'Jr':ki:\l".v:'l:i'7:'Jr'.*kwl'r*i‘r'lr*W\l'r*)l'r'lr*w\l'r'k)l'r**x
. . 0s5h PORTA TRISA 85h .
bit to be an input. ’ y , . .
Th f P 06h PORTB TRISB 86h ;Configuration Word: WDT off, power-up timer on,
erefore we must °7: — —— e ; code protect off, RC oscillator
08 1 88h
send the word : ;
09h EEADR EECON2(") 89h Fv SER
e r SFRs
00011000 to TRISA. 0Ah PCLATH PCLATH 8Ah ’ :-"f“l ¥y =rt e
B . status egu 03
-A similar process is 0Bh INTCON INTCON 8Bh :' ‘_t__ :' - .
followed for settin 0 I
ollo ors g up trisa equ 05
Port B. porthb equ 0E
68 tris SOy g
General Mapped trisb equ Yo
Purpose (accesses) .
Registers in Bank 0 §
(SRAM) org 0o
;Initialise
start bsf status, 5 ;select memory bank 1
movlw B'00011000°"
4Fh CFh movwf trisa ;port A according to above pattern
50h DOh ; A
movlw 00
\ movwf trisb ;all port B bits output
&x bef status, 5 ;select bank O
H
— j B ;The ™main” program starts here
Bank 0 Bank 1 clrf porta jclear all bits in ports A
[Unimplemented data memory location, read as '0". loop movE porta, 0 ;move port A to W register
Note 1: Nota physical register. movwf porth ;move W register to port B
goto loop
end

- start bsef 3,5; selectmemory bank 1

The main idea - building
structure into programs

When we actually design a program, it is important to
think about and plan its structure, before starting to
write the code.

Otherwise it leads to unstructured ‘spaghetti’
programs ie code which has no structure, with
branches going anywhere, and which is
incomprehensible to any but the programmer, and
incomprehensible even to him/her after a week.

Therefore it is essential to plan a programme
structure.

We must consider means of representing the program
diagrammatically.

0 D O 0O O

O O O

Flow Charts: Components

Shown as oval or rounded rectangle
Represents the start or end of a process
Example content: Start, End

Shown as rectangle

Used to show that some operation is
performed

Example: "Add 1 to X", "Save X"

Shown as diamond
Represents a true/false (Yes/No) decision
Example: "Is X > 0?"

Start/End
4

| |
'-\\h-_ _--/}I.

\/

Process *

\

Decision

Yes

No

0 D O 0O O

O O O

Flow Charts: Components

Shown as a parallelogram
Represents receiving data, displaying data
Examples: Get X from the user, display X

Shown as rectangle with double lines
Represents a complex processing step
with a separate owchart

Example: Subroutine

Arrow from one symbol to another symbol
Represents that control passes to the
symbol the arrow points to

Data, Input/Output

;

Subprocess

j/

¥

Flow Line

A Refrigerator Controller

The user has a single control, an adjustable
potentiometer that allows him/her to set a
desired temperature.

Within the fridge there is a temperature
sensor.

Temperature is controlled by switching the
compressor on or off — the temperature will
fall when it is running.

The program reads both the actual and
demand temperatures and determines which
is higher.

If it is the actual temperature, then the
compressor is switched on.

If the difference between the two is very
great, then an alarm will sound.

r

Yes

Activate
Compressor

Read Actual
Temperature T,

v

Read Demand
Temperature Tg

!

-
~ -
-

o -

LU
|
L

H‘“a Mo
——< Ty=Tg? S

Switch off
Compressor

Activate
Alarm

The flow diagram shows this action, using just
the two symbols.

Notice how each diamond decision symbol
contains a question within it with a yes/no
answer.

Its two exit points then correspond to the two
possible answers.

It can be seen that this example program will
loop indefinitely.

This is a common embedded system program
structure and is sometimes called a ‘super
loop’.

L}

Read Actual

Temperature T,

v

Read Demand
Temperature Tg

Activate

Compressor

Switch off
Compressor

e
L

ND ---.____.-"' H""'\-\.
T Ta>=Tp 'N
""'\-\.H -~

F

Yes

Activate
Alarm

F 1

Conditional branching and
working with bits

O

=

One of the most important features of any
microprocessor or microcontroller program
is its ability to make ‘decisions’, i.e. to act
differently according to the state of logical
variables.

Microprocessors generally have within
their instruction sets a number of
instructions which allow them to test a
particular bit, and

B either continue program execution if a condition is
not met

B or branch to another part of the program if it is.
These variables are often bit values in
condition code or Status registers.

Yes

Subtract A from B

No

AddCtoD

Y

Conditional branching and

working with bits

The PIC 16 Series microcontrollers are a little
unusual when it comes to conditional branching
as they do not have branch instructions as such.

They have instead four conditional ‘skip’
instructions.

These test for a certain condition, skipping just
one instruction if the condition is met and
continuing normal program execution if it is not.

The most versatile and generalpurpose of these
are the instructions:

btfsc f,b: tests bit b in memory location f and
skips just one instruction if the bit is clear (i.e. at
Logic O).

btfss f,b: does a similar thing but skips if the
tested bit is set (i.e. at Logic 1).

Yes

Subtract A from B

No

AddCtoD

Y

Example: Condition

;The “main” program starts here

Port A input goes low when the movlw 00 ;clear all bits in port A and B
. movwf porta
button is pressed. novwE porth
\ ! loop bef portb, 3 ;preclear port B, bit 3
The program n.eeds to ‘set the befes borta 3
Output bit (tO ||ght the LED) if the bsf portb, 3 ;but set it if button pressed
input is low, and ‘clear’ it if it is ' bcf portb, 4 .preclear port B, bit 4
higt]. btfss porta, 4
— . . bsf portb, 4 ;but set it if button pressed
This implies a selection process - goto loop
end

in a high-level language we might
call this an ‘if...else’ structure.

The simple skip instruction is not
able to do this on its own.

One way to do this is to ‘preset’
the output bit with one value and
then change it if we find it has
been set wrong.

4 more Arithmetic Instructions

=

ADDWF fileReg, d

u Add the contents of WREG and a file register

] Destination, d
O If d=0, result is placed in WREG
O If d=1, result is placed in file register
SUBWEF fileReg, d
u Subtracts W content from f register.
n Destination, d
O If d=0, result is placed in WREG
O If d=1, result is placed in file register
INCF fileReg, d
[Increment the content of f register.
] Destination, d
O If d=0, result is placed in WREG
O If d=1, result is placed in file register
DECF fileReg, d
| Decrement the content of f register.
] Destination, d
O If d=0, result is placed in WREG
O If d=1, result is placed in file register

If a subtract occurs and the result is
positive, then the Carry bit is 'set’. If
the result is negative, then the Carry
bit is ‘clear’.

Fibonnacci Program
Extended Version

-A counter has been included to show how many
numbers in the series have been calculated.

-The program tests for range overflow by checking the
Carry bit after each addition.

-When the 8-bit range is exceeded, it reverses the
series by subtracting.

-You will notice that ¢ and z are defined as labels in the
opening equates section.

-The program starts as before by preloading the first
three numbers in the series into the memory store.

-It starts moving up the series from the label forward.
-The two most recent numbers are added and the
Carry bit then checked.

-If it is set, the 8-bit range has been exceeded and the
program will need to reverse.

-Assuming Carry was not set, the program then
increments the counter and shuffles the numbers in
the memory store, discarding the oldest.

-The program then loops up to forward.

-If, however, the Carry had been set, the program
branches to reverse. Now it works down the series by
subtraction.

-It tests the counter number to determine when it
should return to forward.

status egu 03
c equ 0
z equ 2
;these memory locations hold the three highest walues of the Fibonacci
£ib0 equ 10 ;lowest number (oldest when going up,
jnewest when reversing down)
fibl egqu 11 ;middle number
fib2 equ 12 ;highest number
fibtemp egu 13 ;temporary location for newest number
counter equ 14 ;indicates value reached, cpening value is 3
org 00
;preload initial wvalues
movlw 0
movwf fib0
movlw 1
movwf fibl
movwf fib2
movlw 3
movwi counter ;we have prelcaded the first three numbers,

;so start count at 3
forward movf
addwf
btfsc
goto
movwl
incf
;now shuffle
movf
movwi
movf
movwf
movf
movwf fib2
goto forward
;when reversing down,
reverse movi f£ib0,0
subwf fibl,0
movwf fibtemp
decf counter,l
;now shuffle numbers held, discarding the cldest
movi fibl, 0 ;first move middle number, to overwrite oldest
movwf fib2
movf £ib0,0
movwf fibl
movf fibtemp,0
movwf fib0
;test if counter has reached 3,
mowvf
sublw
btfsc
goto
goto

fibl,0
fib2,0
status, c
reverse
fibtemp
counter, 1
numbers held, discarding the cldest
fibl, 0 ;first move middle number,
fib0
fib2,0
fibl
fibtemp, 0

;test if we have overflowed 8-bit range
;here if we have overflowed, hence reverse down
;latest number now placed in fibtemp

to overwrite oldest

subtract fib0 from fibl to form new fib0

;latest number now placed in fibtemp

in which case return to forward
counter, 0

3

status, z

forward

reverse

end

series

More Instructions: Rotate

=

RLF fileReg, d
u Rotate left the content of memory location f using carry.
] Destination, d

O If d=0, result is placed in WREG

O If d=1, result is placed in file register
RRF fileReg, d
u Rotate right the content of memory location f using carry.
n Destination, d

O If d=0, result is placed in WREG

O If d=1, result is placed in file register

RLF
RLF
RLF
RLF
RLF
RLF
RLF
RLF
RLF

C 76543210
0 00000001
0 00000010
0 00000100
0 00001000
0 00010000
0 00100000
0 01000000
0 10000000
1 00000000
0 00000001

These commands will move a bit in a register one place to the left (RLF) or the
right (RRF) in a register. For example, if we had 00000001 and we used RLF,
then we would have 00000010. Now, what happens if we have 10000000 and
carried out the RLF instruction? Well, the 1 will be placed in the carry flag. If we
carried out the RLF instruction again, the 1 will reappear back at the beginning.
The same happens, but in reverse, for the RRF instruction. The example below
demonstrates this for the RLF instruction, where I have shown the 8 bits of a

register, and the carry flag :

