
MECE336 Microprocessors I
Input/Output Ports

Dr. Kurtuluş Erinç Akdoğan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

mailto:kurtuluserinc@cankaya.edu.tr

Why Digital Input/Output?

 Almost any embedded system needs to transfer digital data between its
CPU and the outside world. This transfer falls into a number of
categories, which can be summarised as:

 Direct user interface, including switches, keypads, light emitting diodes
(leds) and displays;

 Input measurement information, from external sensors, possibly being
acquired through an analog to digital converter;

 Output control information, for example to motors or other actuators;

 Bulk data transfer to or from other systems or sub-systems, moving in
serial or parallel form, for example sending serial data to an external
memory.

 How can we provide the required interface between the microcontroller
core and the outside world? More precisely, how do we get the data onto
or off the data bus at the right moment?

Parallel Port

 With this plethora of data coming and going, it is likely we will need to
have a variety of digital inputs and/or outputs.

 These are divided broadly into

 serial and

 parallel.

 In serial data transfer, the information is transferred one bit at a time.
Only a single interconnection is used to carry the data itself

 In parallel data transfer, a set (for example, eight) of interconnections
is used. Each of these can carry 1 bit, and each works in parallel with
the others.

 Data can thus be transferred in groups of bits, for example in bytes.

 Parallel input/output (I/O) is the workhorse for all the basic data
interchange of a microcontroller, including interfacing with switches,
LEDs, displays and so on.

 A group of parallel I/O interconnections, appearing on the pins of the
microcontroller, is called a ‘parallel port’.

Building A Parallel Interface
Output port

- Let us create an ‘output’ port.
- Let us assign an address in
the memory map to the port.
- Whenever that address is
selected by an instruction in
the program, it activates a line
called ‘Port Select’.
-A further line, ‘Read/Write’,
indicates whether the CPU is
undertaking a Read (line is
high) or Write (line is low)
operation.
-This is gated with the Port
Select line.
- Each line of the data bus is
connected to a bistable, and all
of these are clocked by the Port
Select line.
-Then the value of the data bus
is latched into the bistable
whenever the port memory
location is addressed, in Write
mode.
-The outputs of the bistables
are made available for
connection to the outside
world.

-Flip-Flop is the basic storage element in
sequential logic that stores one bit of data
-Two stable states: 0 and 1
-Signal at D is stored in output Q if
input E is 1

Input Port

-Let us create a set of input
pins.
-All that is needed is a tristate
buffer gate connected
between an external pin and a
line of the data bus.
-When the buffer is
enabled, again by a logical
combination of Port Select line
and Read/Write control, the
logic value of the external pin
is briefly connected to the
data bus line, and can be read
by the CPU.
-Note that in this design the
external data is not latched by
the port; it must be
held at a stable value by the
external source.

-Output port C has value of input
A if input B is 1
-Output port assumes high
impedance if input B is 0
-Multiple circuits can share the
same output line

Bi-directional Input/Output
Pin Driver

- User should select an external
pin of an IC to function as input
or output.
-A flip-flop (‘Direction’), is added
to determine whether this
microcontroller pin is to act as an
input or output.
- The state of this flip-flop is set
by the program.
- It controls the ‘Output buffer’,
which is enabled when the port
bit is in output mode.
- This circuit forms the basis for
a very useful bi-directional
input/output pin driver, and it is
easy to find versions of it in
many popular microcontrollers.

Bi-directional Input/Output
Pin Driver

- Sets of I/O pins are grouped
together to form a parallel I/O
port.
- Each ‘Data’ flip-flop then forms
one bit of a ‘Data’ SFR
(Special Function register), and
-Each ‘Direction’ flip-flop forms
one bit of a ‘Direction’ SFR.
-Each SFR is memory mapped,
with its own unique address.
-Derived from that address is its
select line, which goes high when
that location is addressed.
-‘Port Select’ selects the Data
SFR and ‘Direction Select’ selects
the Direction SFR.
- By writing to the Direction SFR
the user can determine which
bits are to be input and which
are to be output.
-By writing to the Data SFR,
output is set.
-By reading SFR input is read.

-The Port SFRs can be seen in the memory map,
the detail repeated here.
-SFR named PORTX holds the input/output data
for the port, ie it holds all the “Data Latch” bits
for that port.
-The SFR named TRISX holds all the “TRIS
Latch” bits for that port. The bits can be set
independently, so one can be input while
another output. They cannot be both at the
same time.
-‘TRIS latch’ in replaces the ‘Direction’ latch of
the earlier diagram

Ports A and B can easily be
found on the pin connection
diagram. Port A is only 5 bits,
while Port B is 8.

Note that some pins have
several functions, as indicated
on the diagram.

RA2

RA3

RA4/T0CKI

MCLR

V

RB0/INT

RB1

RB2

RB3 RB4

RB5

RB6

RB7

RA1

RA0

OSC1/CLKIN

OSC2/CLKOUT

VDDSS Supply voltage

Oscillator connections

Port A, Bit 0

Port A, Bit 1Port A, Bit 2

Port A, Bit 3

*Port A, Bit 4

Ground

**Port B, Bit 0

Port B, Bit 1

Port B, Bit 2

Port B, Bit 3

Port B, Bit 7

Port B, Bit 6

Port B, Bit 5

Port B, Bit 4

*also Counter/Timer clock input

**also external Interrupt input

Reset

1

9 10

18

The PIC 16F84A parallel ports

Port B:
Pin RB0 to RB3
-It can be seen that if the ‘TRIS latch’
output is set to 0, then the buffer that it
drives is enabled and the port bit is in
output mode.
-The incoming data is latched, through the
lowest latch in the diagram, rather than
just its instantaneous value being read.
-Data Latch holds data value
-Write data: trigger WR Port
-Read data: trigger RD Port
-Direction in TRISB register

Value 1: input
Value 0: output

-Write TRIS: trigger WR TRIS
-Read TRIS: trigger RD TRIS
-Schmitt trigger for RB0
-Weak pull-up resistors for input
operation

Port B: RB0 to RB3
Input Operation

Port B: Schmitt-Trigger at
RB0/INT

Operation

 Special logic gate input that "cleans up" a corrupted logic
signal

 When output signal is logic 0, the input signal has to
pass the positive going threshold to obtain logic 1

 When the output signal is logic 1, the input signal has to
pass the negative going threshold to obtain logic 0
 small fluctuations in the input signal do not change the logic level

Port B: RB0 to RB3
Output Operation

Port B: RB4 to RB7

Port A: RA0 to RA3
General

Port A: RA0 to RA3
Input Conguration

Port A: RA0 to RA3
Output

Port B: Programming
Status register

Bit5: Select RAM memory bank

Port A: Programming
Status register

Bit5: Select RAM memory bank

Programming for a target piece of
hardware – a simple datatransfer
program

-This program just
uses the Status
register, Ports A
and B, and
their control
registers TRISA and
TRISB. Labels for
these are therefore
defined, taking
memory addresses
directly from the
memory map
-The program starts
with an initialisation
section
-As SFRs are placed
in RAM memory bank
1, it is necessary
first of all to set bit 5
of the Status register
to 1.
-This is done in the
first program line,
labelled start, using
the bsf instruction.

Programming for a target piece of
hardware – a simple datatransfer
program

-To be an output a
port pin must have a
0 in its corresponding
TRIS register bit. It
must have a 1 for the
bit to be an input.
Therefore we must
send the word
00011000 to TRISA.
-A similar process is
followed for setting up
Port B.

Port Electrical Characteristics

 Logic gates are designed to interface easily with each
other, and if we connect logic gates from just one family
together then we usually don’t need to worry about the
electrical details of what is going on.

 If, however, we are connecting logic devices (in this case
microcontroller port bits) to non-logic elements like

 LEDs or

 switches

 then we do need to understand the electrical
characteristics of the logic.

 In particular, we need to understand their input and
output characteristics.

 If the output is at Logic high (or ‘1’), then the internal switch is in the upper
position. It is in the lower position for Logic 0. In either case, the output is
modelled as a voltage source in series with a resistor (in circuit theory this is
called a ‘Thevenin equivalent’ circuit).

 VLH is the logic high-output voltage, with an output resistance of RS(high). VLL is
the logic low-output voltage, with an output resistance of RS(low).

 VLH is equal to the supply voltage (e.g. 5V), (Logic 1) and VLL is equal to 0 V
(Logic 0) if no current is being drawn from the gate output.

 RS(high) and RS(low) are not constant, but depend to some extent on the current
being sourced or sunk from the gate output.

Modelling a logic gate output. (a) Generalised model. (b) Model of
Complementary Metal Oxide Semiconductor (CMOS) logic gate output

Some special cases:
Schmitt trigger inputs

 A Schmitt trigger (Figure 3.5) is a certain type of logic gate input which
is designed to ‘clean up’ a corrupted logic signal.

 It has two input thresholds, with the ‘positive-going’ higher than the
‘negative-going’. A signal starting from a low value has to pass the
negative-going threshold (at which point nothing happens) and then
cross the ‘positive-going’ threshold, at which point the output changes
state.

 The output will not reverse until the input (now negativegoing) has
returned to the negative-going threshold. Thus, small fluctuations which
recross a threshold just crossed do not cause any change in output.

The ‘Open Drain’ output

Connecting to the parallel port:
Switches

 Switches are extensively used in embedded systems.

 Our main initial interest is not to switch directly a voltage or current,
but to convert the switch position to a logic level that can be read by a
microcontroller port bit.

 Switches are used as a direct user interface in the form of push-
buttons, toggle switches, slide switches, or as thumbwheel or rotary
switches.

 They are also used, in the form of microswitches, to detect certain
types of mechanical movement.

microswitchslide switchtoggle switchpush-button

 The simplest way of deriving a logic level from a switch is using a Single-Pole, Double-Throw (SPDT) switch, with
one terminal connected to ground and the other to the supply. The switch wiper simply selects one of these two
as the logic input.

 Some logic families advise against direct connection of a logic input to the supply voltage, so a series resistor
(shown dotted) might be in order.

 Single-Pole, Single-Throw (SPST) switch, for example a pushbutton, has a pull-up resistor is connected to one
terminal of the switch, with the other terminal connected to ground.

 If the switch is closed, then the input to the logic gate, VI, is 0V and a current VS/R flows to ground.

 If the switch is open then VO is equal to VS. To reduce wasted current when the switch is closed, the value of R
should be high.

 For PIC microcontrollers, pull-up values in the range 10–100 kΩ are usually appropriate.

 The switch circuit of Figure (b) can be reconnected as in Figure (c)

Connecting switches to logic inputs. (a) SPDT connection. (b) SPST with pull-
up resistor. (c) SPST with pull-down resistor

Light-Emitting Diodes
 In certain semiconductor materials light is emitted as current flows across a forward-biased p–n junction.

LEDs exploit this phenomenon.

 LEDs are widely available in red, green and yellow, as single devices, and as arrays, bargraphs and
alphanumeric displays.

 Because they are diodes, LEDs display the normal voltage–current relationship of a forward-- biased diode.
This means that, to a reasonable approximation, the voltage across an LED is constant if it is conducting.
Note, however, that this forward voltage is considerably higher for

 The red LED changes from 1.90 to 2.00 V if the current increases from 5 to 20 mA. For the green it changes
from 1.95 to 2.20 V for the same current range.

 Red is the most efficient, which may account for its greater popularity due less current consumption.

 For a single LED to be comfortably visible, it typically requires around 10mA of current.

 Brighter ones may require up to 20 mA, but special low-power devices (such as the highefficiency red) need
as little as 1 or 2mA to be seen.

Light-Emitting Diodes
 An LED can be driven from a logic output, for example a microcontroller port, as long as its current

requirements can be met. Depending on the capabilities of the port output they can be connected so that the
output is sourcing current or sinking current

 Data for the 16F84A (when powered from 5V) shows an output resistances of approximately 130W when at
logic high, and 36W when at logic 0.

Gate output sourcing
current to LED

Gate output sinking current
from LED

Examples For Bit Test
Instructions

 Define bit_1 of PORTA is input and bit_0 of PORTB is output. Write a
program that when button of RA1 is pressed led_0 turns on.

Flowchart

