
MECE336 Microprocessors I
Clock and Delays

Dr. Kurtuluş Erinç Akdoğan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

mailto:kurtuluserinc@cankaya.edu.tr

The Clock Oscillator

 The choice of microcontroller clock source determines some of its
fundamental operating characteristics.

 While ‘faster is better’ in terms of operating speed and program
execution, faster is definitely worse in terms of power consumption,
and also possibly in terms of electromagnetic interference.

 All timed elements within the microcontroller almost invariably depend
on the clock characteristics.

 If stable and accurate timing is required, then the clock oscillator
must be stable and accurate.

 With these points in mind, the clock source must be chosen with care
and understanding.

 This section starts with a review of the clock technologies available,
before moving on to looking at the options offered with the 16F84A.

Clock Oscillator Types:
Resistor–Capacitor RC Oscillator

 In RC, a capacitor is charged through a resistor from the
supply rail. The capacitor voltage drives the input of a
Schmitt trigger buffer.

 When the Schmitt trigger threshold is exceeded, its output
goes high, switching on the MOSFET transistor to which it is
connected. The capacitor is quickly discharged, the Schmitt
output goes low, the MOSFET is switched off and the charging
process starts again.

 This continues for as long as power is maintained. The clock
signal is taken from the rectangular waveform generated
at the Schmitt output.

 This simple circuit is integrated onto many larger ICs
requiring a clock signal. Users are then usually required to
connect resistor and capacitor externally, choosing these to
set the desired frequency.

 It is important to note, however, that RC oscillators can be
implemented entirely on-chip. They are very low-cost and
produce a clock signal very reliably.

 As resistor, capacitor, power supply and Schmitt trigger
threshold values all vary with temperature, their frequency is
not very stable. They cannot therefore be used where
precise timing is required.

Clock Oscillator Types:

Crystal Oscillator
 The crystal oscillator depends on the piezo-electric properties of

quartz crystal.

 Any mechanical distortion of the material causes a voltage to be
produced across opposite sides of it; similarly, if a voltage is
applied to the material, a mechanical distortion results.

 Crystals are carefully cut into very thin slices (usually discs),
have tiny electrodes attached and are mounted so that they can
vibrate.

 When connected in the feedback path across a logic inverter, as
the figure shows, the crystal can be forced through piezo-electric
action into mechanical vibration. This translates into electrical
oscillation, an oscillation that is sustained by the action of the
logic gate.

 Small-value capacitors connected from either side of the crystal to ground optimise the electrical conditions
needed for this oscillation.

 Crystal vibration occurs at a fixed and remarkably stable frequency – this is the great advantage of the
crystal oscillator.

 The crystals themselves tend to be on the expensive side (although cost continues to fall) and mechanically
fragile.

 An alternative is the ceramic resonator. This has similar piezo-electric properties to the crystal and is
connected in an identical way.

 It is, however, both lower in cost and rather less stable in frequency.

 Crystals are the only option when precise timing functions, derived from the clock oscillator, are
required.

The 16F84A Clock Oscillator

 The 16F84A can be configured to operate in four different oscillator
modes selected by setting bits in the Configuration Word.

 XT – crystal. is the standard crystal configuration. It is intended for
crystals or resonators in the range 1–4 MHz.

 HS – high speed. is intended for crystal frequencies in the region of 4
MHz or greater, and/or ceramic resonators leading to the highest
current consumption of all the oscillator modes.

 LP – low power. is intended for low-frequency crystal applications and
gives the lowest power consumption possible. Mostly 32.768 kHz is
suitable for low-power, time-sensitive applications, for example
wristwatches. It will, however, operate at any frequency below around
200 kHz.

 RC – resistor–capacitor. For this an external resistor and capacitor
must be connected to pin 16. This is the lowest-cost way of getting an
oscillator, but should not be used when any timing accuracy is required.

Clock Oscillator: Congurations

 The 16F84A has two oscillator pins, OSC1
(pin 16) and OSC2 (pin 15).

 Between these lies a logic inverter and
associated circuitry.

 Either a crystal or a ceramic can be
connected to create the oscillator circuit of
Figure (a).

 An RC oscillator can also be used, as shown
in Figure (b).

 Finally, an external clock source can simply
be connected to the OSC1 pin (Figure (c)).

(a) Crystal or ceramic, HS, XT or LP.

(b) Resistor–capacitor.

(c) Externally supplied clock

Clock Oscillator: Component
Selection Tables

Power Supply
 A microcontroller is supplied at 5 V traditionally however supply voltages have been pushed

down, and 3.3 and 3.0 V supplies are now common.

 Supply current will be dependent on operating frequency.

 Not to damage device, ‘absolute maximum ratings’, showing voltage and power dissipation
level should not be applied.

 Operating Condition of the PIC 16F84A

 According to data sheet: supply voltage between 4.0 and 5.5 V (suitable for three AA cells)

 At least 4.5 V in HS oscillator mode

 Drop down to 1.5 V without loosing data in RAM in sleep mode

 Supply Current

 About 1.8 mA when running at 4 MHz with supply voltage 5.5 V

 About 10 mA when running at 20 MHz with supply voltage 5.5 V

 Low power consumptions for low-power device PIC 16LF84A: 15 μA

 Taking account of only the consumption of the microcontroller, a system powered with three

AA cells (4.5 V), each with nominal capacity of 800 mAh.
 Running at 1.8 mA would give a battery life of 444 hours, or 18.5 days.

 Running at 10 mA would give 80 hours, or 3.3 days,

 Running at 15 μA consumption would lead to 53 333 hours, equivalent to 2222 days or just over six
years!

The 16F84A Basic Operating
Conditions

Reset: Power-up
 When the microcontroller powers up, power-up must be

detected and force the Program Counter to zero to start
running its program from its beginning

 Along with this, it is also very useful to set SFRs so that
peripherals are initially in a safe and disabled state.

 This ‘ready-to-start’ condition is called ‘Reset’. The CPU starts
running its program when it leaves the Reset condition.

 In the 16F84A there is a Reset input, MCLR (‘Master Clear’),
on pin 4.

 As long as this is held low, the microcontroller is held in Reset.
When it is taken high, program execution starts. If the pin is
taken low while the program is running, then program
execution stops immediately and the microcontroller is forced
back into Reset mode.

 Prior to resetting, to adjust the starting time of program, RC
circuit is used to stabilize the embedded system since power
supply and the clock oscillator take a finite amount of time to
stabilise, and in a complex system power to different parts of
the circuit may become stable at different times.

Reset: Power-up
 16F84A includes some clever on-chip reset circuitry, which

in many situations makes the components of Figure (a) or
(b) unnecessary.

 A Power-up Timer is included on-chip, which can be
enabled by the user with bit 3 of the Configuration Word.

 The 16F84A detects that power has been applied and the
Power-up Timer then holds the controller in Reset for a
fixed time.

 The circuit of Figure (b) need only be applied if the supply
voltage rises very slowly.

 if we don’t want to make use of 16F84A MCLR input then it
is essential to recognise that this input must not just be
left unconnected.

 The simplest thing to do is to tie it to the supply rail and
then forget about it.

 If external reset is desired, add User Reset Button shown
in figure.

Configuration Word

MPASM’s CONFIG Directive

 Microchip’s assembler, MPASM, has a nice feature that allows you to specify, in
the source code file, the selected states of the configuration bits for this program.

Using the CONFIG Directive, a Source File Template

__CONFIG Directive Symbols

(From Microchip Header Files)

 For the symbols available
for your device,please
refer to that device’s
Microchip Include file.

 As long as the correct
device is specified (in the
LIST and INCLUDE file
directives), the correct
polarity of all bits is
ensured.

Delay: Basic Information
 The overall speed of the microcontroller operation is entirely dependent on this frequency of clock which

is a continuously running fixed-frequency logic square wave.

 Microchip use ‘instruction cycle’ to define primary unit of time in the action of the processor, for example
being used as a measure for how long an instruction takes to execute.

 In PIC midrange microcontrollers the main oscillator signal is divided by four to produce the instruction
cycle time.

 For the fastest clock frequency, 20 MHz, the instruction cycle frequency is 5 MHz, with a period of 200
ns.

 The slightly cheaper version of the controller, the 16F84-04, with maximum clock frequency of 4 MHz,
has at this frequency an instruction cycle time of 1 μs.

 A popular clock frequency for very low-power applications, including wristwatches, is 32.768 kHz. This
has an instruction cycle period of 122.07 μs. The result is very low power, but strictly no high-speed
calculations!

 On PIC 16F84A, most instructions take 1 instruction cycle Exceptions (see instruction set)

 GOTO, CALL, RETURN, RETFIE RETLW (2 instruction cycles)

 DECFSZ, INCFSZ, BTFSC, BTFSS (2 instruction cycles if skip, 1 instruction cycle otherwise)

PIC mid-range
instruction cycle
durations for
various clock
frequencies

Generating Time Delays And Intervals

 A recurring theme of embedded systems is how we deal with time – how systems
respond in a timely way to external events and how they can measure time and
generate time delays.

 The initial concept is simple.
 A memory location is set up to act as a counter, loaded with a certain value and then

 decremented repeatedly in a loop until it reaches zero.

 The time taken will depend on the number first placed in the counter and then the time taken for each
program loop.

 To implement accurate delays crystal oscillator gives a frequency of excellent
accuracy and stability.

moving a number into
a memory location

The actual delay loop

Two nop instructions
do nothing at all but
take up timeDECFSZ fileReg, d: Decrement the content of f register skip if 0

Destination, d
If d=0, result is placed in WREG
If d=1, result is placed in file register

Delay: Computation

Decfsz: if number of
register is 0 take 2
instruction cycle, else take
1 instruction cycle.

Delay: Different Oscillator Frequencies

Delay: Example

 Turn on/off PORTB with a
frequency of 1 kHz

Delay: General Formulation of a
Single Delay Loop

Delay: Example Computations

 Realize a delay of 1 ms for an
oscillator frequency of f = 20MHz

 Realize a delay of 1 ms for an
oscillator frequency of f = 100 kHz

 Realize a delay of 100 ms for an
oscillator frequency of f = 100 kHz

 Realize a delay of 100 ms for an
oscillator frequency of f = 20MHz

Cascaded Delay Loops

Cascaded Delay Loops:
Example

 Let f = 4MHz. Determine suitable k1;
k2;N1;N2 for 100 ms delay

 Let f = 125 kHz. Determine suitable
k1; k2;N1;N2 for 1.6 s delay

