
MECE336 Microprocessors I
Subroutines

Dr. Kurtuluş Erinç Akdoğan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

mailto:kurtuluserinc@cankaya.edu.tr

Subroutines

 As we develop bigger programs, we
quickly find that there are program
sections that are so useful that we would
like to use them in different places.

 Yet it is tedious, and space- and memory
consuming, to write out the program
section whenever it is needed.

 Enter the subroutine.

 The subroutine is a program section
structured in such a way that it can be
called from anywhere in the program.

 Once it has been executed the program
continues to execute from wherever it was
before.

Subroutines
 At some point in the main program there is an

instruction ‘Call SR1’.

 Program execution then switches to Subroutine 1,
identified by its label.

 The subroutine must end with a ‘Return from Subroutine’
instruction.

 Program execution then continues from the instruction
after the Call instruction.

 A little later in the program another subroutine is called,
followed a little later by another call to the first routine.

Instructions

 CALL k Send program flow directly to a program line or
label. The position of the CALL instruction is pushed into the
stack. A RETURN instruction will send the program flow back to
the position where the CALL was made.

 RETURN This instruction will send the program flow to the
last position pushed into the stack. Usually, this is done by a
previous CALL instruction

Program Memory And The Stack

-Program Counter, the Stack
and the actual program
memory, work together

-The program memory is loaded
with the program

code that the microcontroller
executes.

-The program is in the form of a
list of instructions.

-Program Counter acts as a
pointer and holds the address of
the next instruction that is to be
executed by the microcontroller.

-Address range of the program
memory is from 0000 to 03FFH.
With its 13-bit Program
Counter, the microcontroller can
theoretically address a range
from 0000 to 1FFFH.

Program Memory And The Stack

-Stack is a temporary memory
that stores values of the program
counter in case of special
instructions (CALL, RETURN)

-Stack is structured as LIFO
memory – last in, first out

-‘reset vector’ is first location in
the program memory.

-When the program starts
running for the first time, for
example on power-up, the
Program Counter is set to 0000.

-The programmer must therefore
place his/her first instruction at
this location.

CALL, RETURN:
Procedure

 The action of the Call instruction is two-fold.

 It saves the contents of the Program Counter onto
the Stack so that the CPU will know where to
come back to after it has finished the subroutine.

 It then loads the subroutine start address into the
Program Counter.

 Program execution thus continues at the
subroutine.

 The return instruction complements the action of
the Call.

 It loads the Program Counter with the data held at
the top of the Stack, which will be the address of
the instruction following the Call instruction.

 Program execution then continues at this address.

 Subroutine Call and Return instructions must
always work in pairs.

CALL, RETURN:
Procedure

 In Figure the situation is shown after a call to a
subroutine labelled DELAY_1MS. The execution
sequence of this call DELAY_1MS is:

 1.Copy the 13-bit contents of the PC into the
stack register pointed to by the Stack Pointer.
This will be the address of the instruction
following the call instruction.

 2. The Stack Pointer is incremented.

 3. The destination address (which we assume is
labelled DELAY_1MS), that is the location in the
Program store of the entry point instruction of the
subroutine, overwrites the original state of the
Program counter. Effectively this causes the
program execution to transfer to the subroutine.

 Apart from the pushing of the return address into
the stack in steps 1 and 2, call acts exactly like a
plain goto. Thus call requires two instruction
cycles for execution, as the pipeline needs to be
flushed to remove the next caller instruction
which is already in situ.

CALL, RETURN:
Procedure

 The exit point from the subroutine should be a
return instruction. This reverses the push action of
call and pulls the return address back out from
the stack into the PC – as shown in Fig. This also
requires a flush of the Pipeline, and takes two
cycles. The execution sequence of return is:

 1.Decrement the Stack Pointer.

 2. Copy the address in the stack register pointed
to by the Stack Pointer into the Program Counter.

Fibonnacci Program
Extended Version

-A counter has been included to show how many
numbers in the series have been calculated.
-The program tests for range overflow by checking the
Carry bit after each addition.
-When the 8-bit range is exceeded, it reverses the
series by subtracting.
-You will notice that c and z are defined as labels in the
opening equates section.
-The program starts as before by preloading the first
three numbers in the series into the memory store.
-It starts moving up the series from the label forward.
-The two most recent numbers are added and the
Carry bit then checked.
-If it is set, the 8-bit range has been exceeded and the
program will need to reverse.
-Assuming Carry was not set, the program then
increments the counter and shuffles the numbers in
the memory store, discarding the oldest.
-The program then loops up to forward.
-If, however, the Carry had been set, the program
branches to reverse. Now it works down the series by
subtraction.
-It tests the counter number to determine when it
should return to forward.

The rule: xn = xn-1 + xn-2

: Fib2 = Fib1+ Fib0

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

The reverse rule: xn-3 = xn-1 - xn-2

: Fib0 = Fib2- Fib1

..., 34, 21, 13, 8, 5, 3, 2, 1, 1, 0,

Fibonnacci Program
With Subroutines

 Fibonacci program is rewritten by replacing
two code sections with subroutines.

 Each subroutine has been created simply
by taking out a block of code from the
main body of the program, labelling the
first subroutine line, and terminating the
block with a return instruction.

 The label effectively becomes the name of
the subroutine.

 The subroutines have been grouped
together and placed after the end of the
main program.

 Each subroutine is called at the
appropriate place in the program, using
the call instruction and invoking the
subroutine name.

Delay: General Formulation of a
Single Delay Loop

Subroutines: Examples

 Write a program that turns ON
and OFF a LED connected to
RB0 pin of PORTB with a 1 ms
delay using a subroutine for
the delay. The oscillator
frequency is 4 MHz.

list p=16f84a
include "p16f84a.inc"
__config _CP_OFF&_WDT_OFF&_XT_OSC

org 0
main
Counter equ 0x0C ; free RAM location 12
N equ D’200’ ; decimal constant 200
clrf PORTB;
bsf STATUS, RP0;
clrf TRISB;
bcf STATUS, RP0;
movlw N;
movwf Counter;
bsf PORTB,0;
LOOP
nop;
nop;
decfsz Counter, 1;
goto LOOP;
nop;
bcf PORTB,0;
end;

Subroutines: Examples
list p=16f84a
include "p16f84a.inc"
__config _CP_OFF&_WDT_OFF&_XT_OSC

org 0
main
Counter equ 0x0C ; free RAM location 12
N equ D’200’ ; decimal constant 200
clrf PORTB;
bsf STATUS, RP0;
clrf TRISB;
bcf STATUS, RP0;
movlw N;
movwf Counter;
bsf PORTB,0;
LOOP
nop;
nop;
decfsz Counter, 1;
goto LOOP;
nop;
bcf PORTB,0;
end;

list p=16f84a
include "p16f84a.inc"
__config _CP_OFF&_WDT_OFF&_XT_OSC

org 0
main
Counter equ 0x0C ; free RAM location 12
N equ D’200’ ; decimal constant 200
clrf PORTB;
bsf STATUS, RP0;
clrf TRISB;
bcf STATUS, RP0;
movlw N;
movwf Counter;
bsf PORTB,0;
call delay;
bcf PORTB,0;

delay; delay subroutine for N
LOOP
nop;
nop;
decfsz Counter, 1;
goto LOOP;
nop;
return; return to main program after N iterations

end;

With Subroutine Without Subroutine

Cascaded Delay Loops

Subroutines: Examples
Long Delay Subroutine

 Write a program that
turns ON and OFF a
LED connected to
PORTB with a 0.6 s
delay using a
subroutine for the
delay. The oscillator
frequency is 4 MHz.

list p=16f84a
include "p16f84a.inc"
__config _CP_OFF&_WDT_OFF&_XT_OSC

org 0
main
counter1 equ 0x0C ; free RAM location 12
counter2 equ 0x0D;
N1 equ .250;
N2 equ .239;
clrf PORTB;
bsf STATUS, RP0;
clrf TRISB;
bcf STATUS, RP0;
movlw N1;
movwf counter1;
bsf PORTB,0;

loop1
nop;
nop;
nop;
nop;
nop;
movlw N2;
movwf counter2;

loop2
nop;
nop;
nop;
nop;
nop;
nop;
nop;
decfsz counter2,1;
goto loop2;
nop;
decfsz counter1,1;
goto loop1;
bcf PORTB,0;
clrw;
end;

Subroutines: Examples
Long Delay Subroutine

list p=16f84a
include "p16f84a.inc"
__config _CP_OFF&_WDT_OFF&_XT_OSC

org 0
main
counter1 equ 0x0C ; free RAM location 12
counter2 equ 0x0D;
N1 equ .250; decimal constant 10
N2 equ .239;
clrf PORTB;
bsf STATUS, RP0;
clrf TRISB;
bcf STATUS, RP0;
movlw N1;
movwf counter1;
bsf PORTB,0;

loop1
nop;
nop;
nop;
nop;
nop;
movlw N2;
movwf counter2;

loop2
nop;
nop;
nop;
nop;
nop;
nop;
nop;
decfsz counter2,1;
goto loop2;
nop;
decfsz counter1,1;
goto loop1;
bcf PORTB,0;
clrw;
end;

list p=16f84a
include "p16f84a.inc"
__config _CP_OFF&_WDT_OFF&_XT_OSC

org 0
main
counter1 equ 0x0C ; free RAM location 12
counter2 equ 0x0D;
N1 equ .250; decimal constant 10
N2 equ .239;
clrf PORTB;
bsf STATUS, RP0;
clrf TRISB;
bcf STATUS, RP0;
movlw N1;
movwf counter1;
bsf PORTB,0;

call delay;
bcf PORTB,0;
clrw;

delay;
loop1

nop;
nop;
nop;
nop;
nop;
movlw N2;
movwf counter2;

loop2
nop;
nop;
nop;
nop;
nop;
nop;
nop;
decfsz counter2,1;
goto loop2;
nop;
decfsz counter1,1;
goto loop1;
return;

end;

With Subroutine Without Subroutine

Subroutines: Examples General
Delay Subroutine

 Write a delay subroutine delay Nms with a delay N · 100 ms.
The oscillator frequency is 4 MHz. The value of N is passed in
the working register W. Use the subroutine in a blinking LED
application

N equ .10;
movlw N;move N to working register for delay subroutine

delay_Nms; delay subroutine for N*100ms delay
movwf 0x0E;

loopN;
call delay_100ms; call 100ms delay subroutine
decfsz 0x0E,1;
goto loopN;
return; return to main program after N iterations

delay_100ms; delay subroutine for 100ms delay
movlw .250;
movwf 0x0C; counter for outer loop

loop1; outer loop with N1=250 iterations
nop; k1 = 3
nop;
nop;
movlw .98;
movwf 0x0D; counter for inner loop;

loop2; inner loop with N2 = 98 iterations
nop; k2 = 1
decfsz 0x0D,1; decrement counter2 (inner loop)
goto loop2;
nop;
decfsz 0x0C,1; decrement couter1 (outer loop)
goto loop1;
return; return to delay_Nms subroutine

Subroutines:
Examples Moving LEDs

 Write a program such that LEDs
connected to the pins of PORTB are
turned on one after another with a
delay of 1 s. Start from RB0.

list p=16f84a;
include "p16f84a.inc"

N equ .10;

org 0;
main;

bsf STATUS,5;
clrf TRISB; all PORTB pins are output
bcf STATUS,5;
movlw b'00000001';
movwf PORTB; turn on led at RB0
bcf STATUS,0;

loop;
movlw N; move N to working register for delay subroutine
call delay_Nms;
btfsc PORTB,7;
rlf PORTB,1; rotate left PORTB twice if RB7 is 1 (otherwise LEDs will be off)
rlf PORTB,1; rotate left PORTB over carry one time after each delay
goto loop;

delay_Nms; delay subroutine for N*100ms delay
movwf 0x0E;

loopN;
call delay_100ms; call 100ms delay subroutine
decfsz 0x0E,1;
goto loopN;
return; return to main program after N iterations

delay_100ms; delay subroutine for 100ms delay
movlw .250;
movwf 0x0C; counter for outer loop

loop1; outer loop with N1=250 iterations
nop; k1 = 3
nop;
nop;
movlw .98;
movwf 0x0D; counter for inner loop;

loop2; inner loop with N2 = 98 iterations
nop; k2 = 1
decfsz 0x0D,1; decrement counter2 (inner loop)
goto loop2;
nop;
decfsz 0x0C,1; decrement couter1 (outer loop)
goto loop1;
return; return to delay_Nms subroutine

end;

