MECE336 Microprocessors I
Subtraction and Lookup Tables

Dr. Kurtulus Ering Akdogan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

@ CANKAYA UNiVERSITESI
/) MEKATRONIK MUHENDISLIGI BOLUMU

199

mailto:kurtuluserinc@cankaya.edu.tr
mailto:kurtuluserinc@cankaya.edu.tr
mailto:kurtuluserinc@cankaya.edu.tr
mailto:kurtuluserinc@cankaya.edu.tr
mailto:kurtuluserinc@cankaya.edu.tr

Status Register (ADDRESS 03h, 83h)

R/W-0 R/W-0 R/W-0 R-1 R-1 R/MW-x R/W-x R/W-x
| RP | RPt | RPO | TO | PO | z | DC | cC |
bit 7 bit 0
bit 7-6 Unimplemented: Maintain as "0’
bit 5 RPO: Register Bank Select bits (used for direct addressing)

01 = Bank 1 (80h - FFh)
00 = Bank 0 (00h - 7Fh)
bit 4 TO: Time-out bit
1 = After power-up, CLEWDT instruction, or sLEEP instruction
o = AWDT time-out occurred
bit 3 PD: Power-down bit
1 = After power-up or by the CLEWDT instruction
0 = By execution of the sLEEP instruction
bit 2 Z: Zero bit
1 = The result of an arithmetic or logic operation is zero
o = The result of an arthmetic or logic operation is not zero
bit 1 DC: Digit carry/borrow bit (RDDWF, ADDLW, SUBLW, SUBWFE instructions) (for borrow, the polarity
IS reversed)
1 = A carry-out from the 4th low order bit of the result occurred
o0 = No carry-out from the 4th low order bit of the result
bit 0 C: Carry/borrow bit (RDDWF, ADDLW, SUELW, SUBWE instructions) (for borrow, the polarity is
reversed)

1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred

Mote: A subtraction is executed by adding the two's complement of the second operand.
For rotate (RrF, RLF) instructions, this bit is loaded with either the high or low order
bit of the source register.

Subtraction: Background
Twos-Complement

Binary operation that can be used for subtraction
Computation for a given binary number B

B Take the bitwise complement of B (called ones-complement)
B Add 1 to the result

Examples: suppose we want to find how -28

First we write out 28 in binary form.

00011100

Then we invert the digits. 0 becomes 1, 1 becomes 0.
11100011

Then we add 1.

11100100

That is how one would write -28 in 8 bit binary.

Subtraction: Background
Subtraction of Two Binary Numbers: Bl - B2

[0 Compute the twos-complement of B2
® Add Bl and the twos-complement of B2
B Resultis Bl - B2

m If the result is negative, there is "borrow" indicated with C flag is
Zero

O Examples

(+8) 0000 1000 0000 1000
~(+5) 0000 0101 -> Negate -> +1111 1011

(+3) 1 eeee eell : discard carry-out

(+3) @000 0011
+(-8) 1111 1ee@

(-5) 1111 1011

Subtraction: Instructions
SUBWF

[0 Substract Working Register from File Register

[0 subwf f,d: Subtract the W register from the
content of memory location f. Result is written
1§
B Working register Wifd =0
B File registerfifd =1

0 The C/borrow flag (bit 0) in the Status register
IS

B O if there is borrow
B 1 if thereis no borrow

Example

[0 Write a program to subtract h'52’ - h’'53°. Show
the result at PORTB.

;======8 bit subtraction====

LIST P=16F84A
INCLUDE “P16F84A.INC”
CLRF PORTB
BSF STATUS, 5 ;in BANK1
CLRF TRISB ;PORTB is output
BCF STATUS, 5 ; in BANKO
MOVLW h’52’ ; W=h’52’
MOVWF PORTB ;PORTB=52
MOVLW h’53’ ; W=h’53’
SUBWF PORTB,F ;PORTB=PORTB (h’52")-W(h’53’),result
negative
COMPF PORTB
INCF PORTB ;2's complement os result,
-~ LOOP
GOTO LOOP

END

Subtraction: Instructions
SUBLW

Substract Working Register from
Literal

sublw k: Subtract the W register from
a literal k. Result is written into W.

'he C/borrow flag (bit 0) in the
Status register is

B O if there is borrow

m 1 if thereis no borrow

Examples

O Example
moviw 0
sublw 0
O Means load W with 0x00. Subtract that from 0x00.

O Subtraction is by complementing the W register and adding 1 (2's
complement), and adding to the literal.

O 0-0= OxFF + 1 + 0x00 = 0x00 (C set)

O Example

[0 In general, the C bit (really a borrow rather than carry for subtraction)
is set when the result is positive (including zero), as is normal in 2's
complement subtraction.

moviw 0x00
sublw 0x33
0 O0x33-0x00= OxFF + 1 + 0x33 = 0x33 (C set)

Subtraction of
Two 16-bit Numbers

If the numbers greater than 1 byte (8 bit), we can subtract these
numbers using 16-bit subtraction. When subtracting two 16-bit data
operands, we need to be concerned with the propagation of a carry from
the lower byte to the higher byte.

For example look at the subtraction of h'3CE7'-h’3B8D’

3CE7 3C17
- 3B 8D - 3B 8D
01 5A 01 5A

When the first byte is subtracted, there is a carry (E7-8D=59, C=1,
positive). Subtract high byte directly.

After the low byte subtraction; If C=0 subtract 1 from high byte of first
number. And then subtract higher bytes. And control the carry again. If
C=1, show output directly. If C=0, take 2’s complement of output and
show the result.

Example

[0 Write a program to subtract two 16-bit
numbers. The numbers are h'3CE7’ and h’
3B8D’. Show low byte of the result at PORTB.
When bit_1 of PORTA (RA1) is pressed, show
high byte of the result at PORTB.

Solution: 2 byte (16-bit) numbers;

[0 Draw FLOW CHART DIAGRAM

O A=3CE7, B= 3B8D

0 Low byte of A (AL)=E7, High byte of A (AH)=3C
0 Low byte of B (BL)=8D, High byte of B (BH)=3B

:=======16-bit SUBTRACTION =======

LIST P=16F84A
INCLUDE “P16F84A.INC"

CLRF PORTB
BSF STATUS, 5 ;in BANK1
CLRF TRISB ;PORTB is output
MOVLW h'FF
MOVWE TRISA ; PORTA is input
BCF STATUS, 5 ;in BANKO

AL EQU h'0C’ : Address of AL

AH EQU h'0D’ : Address of AH

BL EQU h'OE’ : Address of BL

BH EQU h'OF’ - Address of BH

BEGIN

MOVLW h'E7’ : W=h'E7’
MOVWE AL ;AL=hAS
MOVLW h'3C’ s W=h'3C’
MOVWF AH AH=h'3C
MOVLW h'8D’ ; W=h'8D’
MOVWEF BL ‘BL=h"8D’
MOVLW h'3B’ : W=h'3B’

MOVWEF BH ;BH=h"3PB’

SUB
MOVF BLW
SUBWF ALF
BTFSS STATUS, 0;C=0 ?
DECF AH,F
MOVF BH,W
SUBWF AH,F

SHOW _LOW_BYTE
MOVF ALW
MOVWF PORTB

TEST RA1

BTFSC PORTA,1

GOTO TEST RA1
SHOW_HIGH_BYTE

MOVF AHW

MOVWF PORTB

LOOP
GOTO LOOP

END

;W=BL
:AL=AL-W(BL)

if C=0, AH=AH-1
‘W=BH
:AH=AH-W(BH)

“W=AL
;show low byte at PORTB

;RA1 is pressed?
AFNO

- if YES , W=AH
;show high byte at PORTB

Look-up Tables

O The instruction movlw allows us to introduce within the program a
byte of constant data such that:

moviw D01000
movwf delcntr2

O This is fine for introducing single bytes of data into a program, or just
a few.

O But suppose we want to place in the program a whole list of humbers,
maybe

B to generate a waveform or
B to produce output patterns on a display.

O Suppose also that we want to be able to record where we are in the list
with some sort of marker.

O The movlw instruction is then not really up to the job,

[0 We need to apply a way of setting up and accessing a block of data.
This is called a ‘lookup table’.

Introducing the Look-up Table

O A look-up table is a block of data that is held in the program memory and which can be
accessed by the program and used within it.

O In a Von Neumann structure with its single address and data buses, it is rather easy to set
up and use look-up tables, as all memory locations are of equal size and all can be accessed
with equal ease.

O In a Harvard structure, it is more difficult, as data must be moved from one distinct memory
map to another.

O The situation is made worse by the difference in memory location size that usually exists
between data and program memories.

0 Therefore in a Harvard structure, like the PIC’s, a special technique is used to create look-
up tables. This introduces several important new ideas.

F /’—‘\\Address/-—\
Von Neumann Data =D Data Harvard
memory (——\ memory
Data \ /
Central Address Contra Address (O
entra entra
ol gl | Processing [0 I by
Unit (CPU) output Unit (CPU) K——))
Data \ J
Address
Program {==) Program
memory (—— memory

~— 0@ Data vy

PROGRAM COUNTER

REGISTER FILE MAP -PIC16F84A

The program counter (PC) specifies the address of the ™ Commi e mad o
instruction to fetch for execution. oth | TMRO | OPTION REG | 81h
The PC is 13 bits which potentially can address up to Ei: STZ::S S:;:S z:
213=8K=8192 instructions, although the PIC16F84 has 04 FSR FSR 84
only 1024 =1K=210 (10 bits) instruction capacity. o e o
The Program counter normally increments up from o7h = - 87h
instruction 1 at location h’000’, but can skip or jump if & —e | _Eeeo &
commanded by a relevant instruction. 0An | PCLATH PCLATH | oAn
Program counter (PC) is 13-bit; low 8-bit is PCL and S e
high 5-bit is PCH. 10-bits are used for PIC16F84.
The low byte is called the PCL register. This register is General Mapped
readable and writable, rediers | Eeni0
The high byte is called the PCH register. This register
contains the PC<12:8> bits and is not directly readable
or writable. g;: EE:
PCLATH is used to write data to PCH | __

— PCH PCL — —

12 11 10 9 8 7 0 ﬁ

Bank 0 Bank 1

0 The look-up table is formed as a subroutine.
[0 Every byte of data in the table is accompanied by a special instruction, retlw.
O This instruction is another ‘return from subroutine’ but with a difference - it
requires an 8-bit literal operand.
O As it implements the subroutine return, it picks up its operand and puts it into the
W register.
O The table is essentially a list of retlw instructions, each with its byte of data.
Main program 7 am the W regist_EF\ Look-up table, _in
| am carrying a code form of Subroutine
from the main

program, which will
show which number | table addwf pcl

_ must come back with retlw 23

movf sample_no,D 2 05 thw 3f
retlw

call table 4 Now I'm bringing retlw 47

movwi portb
p @J’ back the chosen etiw 7§
number from the
subroutine. retiw 0az
/ retlw 1f
retiw 03
. rettw &7
-
retlw Oc5

retlw 32

O a4d

O00O

What we need now is a technique which allows just one of those retlw instructions to be selected from the

list.

The first instruction in the subroutine,. addwf pcl adds the contents of the W register to PCL.
PCL is the lower byte of the program counter.
Once a number has been added to the program counter, program execution jumps forward by whatever that

number was.

If the number added is zero, then the next instruction is executed.
In this example the CPU executes the retlw instruction it lands on, and then goes back to main program.
Only two instructions are executed, the addwf pcl and the chosen retiw.

Main program

transfers into the W register the
contents of a memory location
called sample no

movf sample _no,0
call table calls the subroutine table
movwwf portb

return from the subroutine, with the
number 1f nowplaced in theWregister.

I am the W regisg:\ﬁ Look-up table, n
| am carrying a code form of Subroutine
from the main As the qubroutine starts program
program, which will execution, the number 5 is added to pcl.
show which number | table addwf pcl
must come back with rethw 23
retlw 3f

NMow I'm bringing retiw 47
back the chosen

. retlw 7t
sample no was holding the number from the 030
number 5 subroutine. retiw Ua
retlw 1f

] retiw 03

1f ’é} retlw 67

e rettw 32

Program execution
therefore jumps forward
by 5, to instruction retlw 1f.

b

In summary, the W register is like a messenger being sent to the subroutine.
It goes to the subroutine carrying a code (which acts as a pointer) showing which
line in the table is wanted.

It comes back carrying the number stored in that line.

There is one possible problem with this approach - by manipulating only the lower
byte of the program counter we can only operate within the first 256 words of
program memory, or within any page following

Main program 71 am the W regist_EF\ Look-up table, in
| am carrying a code form of Subroutine
from the main

program, which will
show which number | table addwf pcl

_ must come back with retlw 23

movf sample_no,D 2 05 thw 3f
retlw

call table 4 Now I'm bringing retlw 47

movwi portb
p @zj, back the chosen etiw 7§
number from the
subroutine. retiw 0az
/ retlw 1f
retiw 03
g rettw &7
retlw Oc5

retlw 32

Example Program

Program takes 8-bit values from a table and
transfers them to the ping-pong LEDs with a

W|th LOO k— U p Ta b I @ delay between each data transfer. The overall

REGISTER FILE MAP -PIC16F84A

File Address File Addres
00h | Indirect addr.(! | Indirect addr.(! | goh
01h TMRO OPTION_REG 81h
02h PCL PCL 82h
03h STATUS STATUS 83h
04h FSR FSR 84h
05h PORTA TRISA 85h
06h PORTB TRISB 86h
07h - — 87h
08h EEDATA EECON1 88h
0%h EEADR eeconz! 89h
0Ah PCLATH PCLATH 8Ah
0Bh INTCON INTCON 8Bh
0Ch 8Ch

68
General Mapped
Purpose (accesses)
Registers in Bank 0
(SRAM)
4Fh CFh
50h DOh

TFh

Bank 0

effect is a display of randomly flashing LEDs

ek k ke ke ko sk ke vk sk ke sk ke sk Sk %k ke ke ke otk Sk sk sk ok ke sk sk ke ke ke ke sk ke sk ke sk ke ke vk sk ok sk vk Sk sk Sk sk Sk sk Yk ok Sk ok ke ok ke ke ke ok ke
’

;Flashing LEDs 3.

;This program continuously outputs a series of LED patterns,
;using simulation or ping-pong hardware.

;TJw 5.3.05. Tested in simulation 11.3.05.
;**
;Clock is 800kHz

;Configuration Word: WDT off, power-up timer on,

; code protect off, RC oscillator

r

;specify SFRs

pcl equ 02
status equ 03
porta equ 05
trisa equ 05
portb equ 060

equ 06

trisb
pointer equ 10
delcntrl equ 11
delcntr?2 equ 12

r

org 00
;Initialise
start Dbst status, 5 ;select memory bank 1
movlw B'00011000"
movwf trisa ;port A according to above pattern
movlw 00
movwf trisb ;all port B bits output
bcf status, 5 ;select bank 0

;The “main” program starts here

movlw 00 ;clear all bits in port A
movwi porta
movwf pointer ;also clear pointer
HE oop movf pointer,0 ;move pointer to W register
call table
movwf portb ;move W register, updated from table SR, to port B

call delay
incf pointer,1

btfsc pointer,3 ;test if pointer has incremented to 8
clrf pointer ;if it has, clear pointer to start over
goto loop

r
IR O b e g b g b b b b i b A b i b A b b i b dh g b b b A A b b b db A b b i b b b b b b i b b b 4
r

; Subroutines
R b b A b b b b b i i e i i i i b g i i i i i i b b i i i i i i i i i i e i i i i i A i i i i b i i i i i 4
r

;Introduces delay of 500ms approx, for 800kHz clock

(delay subroutine omitted)

;Holds Lookup Table

table addwf pcl
retlw 23
retlw 3f
retlw 47
retlw 7L
retlw 0a?2
retlw 1f
retlw 03
retlw 67

end

LED Arrays:
Seven-segment Displays

By lighting different combinations of the seven segments, all numerical digits
can be displayed, as well as a surprising number of alphabetic characters.

A decimal point is usually included, as shown.

The problem arises that if each segment is illuminated by an LED, then 14
connections are required, and that is just for one digit.

The common anode/common cathode connection requires less connections

/w‘: | |
TR

3
- g SCO05-11
< c l}j‘ 5.8
——\ _
+ + + + e b} cf df e f| 9 DP
1 2 #1.5[0.06]

7 6 4 2 1 9 10 5

a b 3,8

-.l‘_’________c
1%

19[0.748]
12.7[0.5]

/7-Segment Display: Types
Common Cathode (CC), Common Anode (CA)

O

In the common cathode display, all the cathode connections of the LED segments are joined
together to logic “0” or ground.

The individual segments are illuminated by application of a "HIGH"”, or logic “1” signal via a
current limiting resistor to forward bias the individual Anode terminals (a-g).

In the common anode display, all the anode connections of the LED segments are joined
together to logic “1”.

The individual segments are illuminated by applying a ground, logic “0” or "LOW” signal via a
suitable current limiting resistor to the Cathode of the particular segment (a-g).

a @

b

C »
d e
e »

f e
g'l

[

YYVYVYY

i I —
b ——
C o]
d —
2 e

f—::

g e

A
I, I

Comm on

Cathode v

+\

"f’,/ Anode

- .
..‘_.

o
—

T

A A

e
d—:
ol —

 —

L

Comm on +
—

d es—— 3

b‘-—::

A
.l

Truth Table

/-Segment Display
(Common Cathode)

Display

Digits

Hex
0x3F

0x06

Ox66

0x07

Ox6F

0xBF

1
0

0

1

1

1

1
1

1
1

1

1

1

1

1
1

1

1

00

010
1

1
1

01070070

0

00000

1

7

Digit with decimal point: add 0x80 to Hex

/-Segment Display: Connection
Connection to PORTB of PIC

. U1
= D - ::: OSCA/CLKIN RAD :—:;
I I OSCZCLKOUT RAA1 —.-1—
20M?ilz VDD an RAZ ?
] <TEXT> | MCLR RAZ ?
RAGTOCK] [
— L 2 ﬂ
ZEpF BpF RBOJINT
= STEX T ™ STEXT> RBA1
RB2
RB3
T RB4
] RBS
RBG
RB7
PIC1GF 244
STEXT>

©saeedsolutions.blogspot.com 10 -l

/-Segment Display:

Lookup Table

Lookup Table for Digits

table
addlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw
retlw

— Extend to table including decimal

pcl

0x3F
0x06
0xb5B
Ox4F
0x66
0x6eD
0x7D
0x07
O0xTF
O0x6F

point if desired

Numbers
Digit || Hex | Digit Hex
0 Ox3F 0. OxBF
1 0x06 1. 0x86
2 0x5B 2. 0xDB
3 Ox4F 3. OxCF
4 0x66 4. OxE6
5 0x6D 5. OxED
6 0x7D 6. OxFD
7 0x07 7. 0x87
8 Ox7F 8. OxFF
0 Ox6F 0. OxEF

Example

[0 Write a program
to show ‘5’ in 7-
segment display.

BEGIN

LOOP

LOOKUP_TABLE

LIST
INCLUDE
CLRF
BSF
CLRF
BCF

MOVLW
CALL
MOVWF

GOTO

ADDWEF
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW
RETLW

P=16F84A
“P16F84A.INC”

PORTB
STATUS, 5
TRISB
STATUS, 5

h’05’
LOOKUP_TABLE
PORTB

LOOP

PCL,F
h'3F’
h'06’
h'5B’
h'4F’
h'66’
h'6D’
h'7D’

; in BANK1 —
;PORTB is output
; in BANKO

; W=h’05’ (test number)

;PORTB=6D

;PCL=W(h’05’)

;W=h'6D’

Example

O Write a program BEGIN
to show ‘5’ in 7- MOVLW h'05’ ; W=h’05’ (test number)
: CALL LOOKUP_TABLE
segment display. MOVWF PORTB ;PORTB=6D
LOOP
GOTO LOOP

LOOKUP_TABLE
ADDWEF PCL,F ;PCL=W(h'05")
retlw Ox3F
retlw 0x06
retlw Ox5B
retlw Ox4F
retlw O0x66
retlw Ox6D
retlw Ox7D
retlw 0x07
retlw Ox7F
retlw Ox6F

END

Example

Problem 17:

O A program partially written and with the delay
subroutine can be found on the course webpage.
Complete the program which is for a 7-segment display
with common cathode to carry out following functions
together. But first draw the flow chart diagram.

B Display the number 9 on a 7-segment display at PORTB
B Wait for 1 second

B Subtract 7 from the displayed number and display the new
number if the button at RA2 is pressed. If the result is
negative, add 10 to the result and display the result of this
computation.

B go back to step 2.

/-Segment Display:
Two Displays in Parallel

To produce a 4, 5 or 6 digit display, all the 7-segment displays are connected in parallel.

The common line (the common-cathode line) is taken out separately and this line is taken low for a short
period of time to turn on the display.

Each display is turned on at a rate above 100 times per second, and it will appear that all the displays are
turned on at the same time.

As each display is turned on, the appropriate information must be delivered to it so that it will give the
correct reading.

Up to 6 displays can be accessed like this without the brightness of each display being affected.

T T2
WELD
[
=] al b
+5y 1 J Fl K h| g Fl K I
[raz Rad D:a U U:a []
- F b F b
Rog R0
d ! e Atz — —
[Jraamock s]—l_r_—i' I D“ & “D [:I“ 9 :D
3 15 =
d d
4% pc sl = ——o| | =0
Oz, s 16FB4 w3 S ECEEEBEEEEL
1 A = & 1 3R
B ——[|REOANT RET [—T——
T 1z 3300
——{|rE1 RES
2 i1 3300k
—|re= RES [J———
= @ AL [y
RE2 RE4
3300
o
e

loop
N bsf PORTA,0; display 1 is selected

bcf PORTA,1;
EXAMPLE:
n call common_anode; pin value for digit 8 in W

movwf PORTB; write value to PORTB
call delay_5ms; wait for 5 msec

[wo Digit Display | = " =
bsf PORTA,1; display 2 is selected

moviw .9;

call common_anode; pin value for digit 9 in W
movwf PORTB; write value to PORTB

call delay_5ms;

goto loop; repeat the process

list p=16f84a;
include "p16f84a.inc"
__config _CP_OFF&_WDT_OFF&_XT_OSC;

N equ Ox0A; N = 10 -- delay = 10*100ms common anode
org 0; _) addwf PCL,1;
main; Warning: the delay subroutine uses 0x0C, 0x0D -> we retlw Ox3F
cannot use these registers for the main program retlw 0x06
bsf STATUS,5; retlw Ox5B
clrff TRISB; PORTB is output retlw Ox4F
clrf TRISA; RA2 is input retlw 0x66
bcf STATUS,5; retlw 0x6D
clrf PORTB; retlw 0x7D
comf PORTB,1; all pins are 1 -> all segments are off retlw 0x07
clrf PORTA; retlw Ox7F
retlw Ox6F

delay_5ms; delay subroutine for 100ms delay
moviw .250;
movwf 0x0C; counter for outer loop
loop1; outer loop with N1=250 iterations: N1 = 250, k1 =
0
moviw .5;
movwf 0x0D; counter for inner loop;
loop2; inner loop with N2 = 98 iterations: N2 =5, k2 =0
decfsz 0x0D,1; decrement counter2 (inner loop)

goto loop2;

nop,

decfsz 0x0C,1; decrement couterl (outer loop)
goto loopl;

return; return to delay_Nms subroutine

end;

