
MECE336 Microprocessors I
Subtraction and Lookup Tables

Dr. Kurtuluş Erinç Akdoğan

kurtuluserinc@cankaya.edu.tr

Course Webpage: http://MECE336.cankaya.edu.tr

mailto:kurtuluserinc@cankaya.edu.tr
mailto:kurtuluserinc@cankaya.edu.tr
mailto:kurtuluserinc@cankaya.edu.tr
mailto:kurtuluserinc@cankaya.edu.tr
mailto:kurtuluserinc@cankaya.edu.tr

Status Register (ADDRESS 03h, 83h)

Subtraction: Background

Twos-Complement

 Binary operation that can be used for subtraction

 Computation for a given binary number B

 Take the bitwise complement of B (called ones-complement)

 Add 1 to the result

 Examples: suppose we want to find how -28

 First we write out 28 in binary form.

 00011100

 Then we invert the digits. 0 becomes 1, 1 becomes 0.

 11100011

 Then we add 1.

 11100100

 That is how one would write -28 in 8 bit binary.

Subtraction: Background
Subtraction of Two Binary Numbers: B1 - B2

 Compute the twos-complement of B2
 Add B1 and the twos-complement of B2

 Result is B1 - B2

 If the result is negative, there is "borrow“ indicated with C flag is
zero

 Examples

Subtraction: Instructions
SUBWF

 Substract Working Register from File Register

 subwf f,d: Subtract the W register from the
content of memory location f. Result is written
in

 Working register W if d = 0

 File register f if d = 1

 The C/borrow flag (bit 0) in the Status register
is

 0 if there is borrow

 1 if there is no borrow

Example

 Write a program to subtract h’52’ - h’53’. Show
the result at PORTB.

Subtraction: Instructions
SUBLW

 Substract Working Register from
Literal

 sublw k: Subtract the W register from
a literal k. Result is written into W.

 The C/borrow flag (bit 0) in the
Status register is

 0 if there is borrow

 1 if there is no borrow

Examples

 Example

 movlw 0

 sublw 0

 Means load W with 0x00. Subtract that from 0x00.

 Subtraction is by complementing the W register and adding 1 (2's
complement), and adding to the literal.

 0-0= 0xFF + 1 + 0x00 = 0x00 (C set)

 Example

 In general, the C bit (really a borrow rather than carry for subtraction)
is set when the result is positive (including zero), as is normal in 2's
complement subtraction.

 movlw 0x00

 sublw 0x33

 0x33-0x00= 0xFF + 1 + 0x33 = 0x33 (C set)

Subtraction of
Two 16-bit Numbers

 If the numbers greater than 1 byte (8 bit), we can subtract these
numbers using 16-bit subtraction. When subtracting two 16-bit data
operands, we need to be concerned with the propagation of a carry from
the lower byte to the higher byte.

 For example look at the subtraction of h’3CE7’-h’3B8D’

 When the first byte is subtracted, there is a carry (E7-8D=59, C=1,
positive). Subtract high byte directly.

 After the low byte subtraction; If C=0 subtract 1 from high byte of first
number. And then subtract higher bytes. And control the carry again. If
C=1, show output directly. If C=0, take 2’s complement of output and
show the result.

Example

 Write a program to subtract two 16-bit
numbers. The numbers are h’3CE7’ and h’
3B8D’. Show low byte of the result at PORTB.
When bit_1 of PORTA (RA1) is pressed, show
high byte of the result at PORTB.

Solution: 2 byte (16-bit) numbers;

 Draw FLOW CHART DIAGRAM

 A=3CE7, B= 3B8D

 Low byte of A (AL)=E7, High byte of A (AH)=3C

 Low byte of B (BL)=8D, High byte of B (BH)=3B

Look-up Tables

 The instruction movlw allows us to introduce within the program a
byte of constant data such that:

movlw D01000

movwf delcntr2

 This is fine for introducing single bytes of data into a program, or just
a few.

 But suppose we want to place in the program a whole list of numbers,
maybe

 to generate a waveform or

 to produce output patterns on a display.

 Suppose also that we want to be able to record where we are in the list
with some sort of marker.

 The movlw instruction is then not really up to the job,

 We need to apply a way of setting up and accessing a block of data.
This is called a ‘lookup table’.

Introducing the Look-up Table
 A look-up table is a block of data that is held in the program memory and which can be

accessed by the program and used within it.

 In a Von Neumann structure with its single address and data buses, it is rather easy to set
up and use look-up tables, as all memory locations are of equal size and all can be accessed
with equal ease.

 In a Harvard structure, it is more difficult, as data must be moved from one distinct memory
map to another.

 The situation is made worse by the difference in memory location size that usually exists
between data and program memories.

 Therefore in a Harvard structure, like the PIC’s, a special technique is used to create look-
up tables. This introduces several important new ideas.

Von Neumann Harvard

PROGRAM COUNTER

 The program counter (PC) specifies the address of the
instruction to fetch for execution.

 The PC is 13 bits which potentially can address up to
213=8K=8192 instructions, although the PIC16F84 has
only 1024 =1K=210 (10 bits) instruction capacity.

 The Program counter normally increments up from
instruction 1 at location h’000’, but can skip or jump if
commanded by a relevant instruction.

 Program counter (PC) is 13-bit; low 8-bit is PCL and
high 5-bit is PCH. 10-bits are used for PIC16F84.

 The low byte is called the PCL register. This register is
readable and writable.

 The high byte is called the PCH register. This register
contains the PC<12:8> bits and is not directly readable
or writable.

 PCLATH is used to write data to PCH

REGISTER FILE MAP -PIC16F84A

 The look-up table is formed as a subroutine.

 Every byte of data in the table is accompanied by a special instruction, retlw.

 This instruction is another ‘return from subroutine’ but with a difference – it
requires an 8-bit literal operand.

 As it implements the subroutine return, it picks up its operand and puts it into the
W register.

 The table is essentially a list of retlw instructions, each with its byte of data.

 What we need now is a technique which allows just one of those retlw instructions to be selected from the
list.

 The first instruction in the subroutine,. addwf pcl adds the contents of the W register to PCL.

 PCL is the lower byte of the program counter.

 Once a number has been added to the program counter, program execution jumps forward by whatever that
number was.

 If the number added is zero, then the next instruction is executed.

 In this example the CPU executes the retlw instruction it lands on, and then goes back to main program.

 Only two instructions are executed, the addwf pcl and the chosen retlw.

transfers into the W register the

contents of a memory location

called sample no

calls the subroutine table

sample no was holding the

number 5

As the subroutine starts program

execution, the number 5 is added to pcl.

Program execution

therefore jumps forward

by 5, to instruction retlw 1f. return from the subroutine, with the

number 1f nowplaced in theWregister.

 In summary, the W register is like a messenger being sent to the subroutine.
It goes to the subroutine carrying a code (which acts as a pointer) showing which
line in the table is wanted.

 It comes back carrying the number stored in that line.

 There is one possible problem with this approach – by manipulating only the lower
byte of the program counter we can only operate within the first 256 words of
program memory, or within any page following

Example Program
With Look-up Table

REGISTER FILE MAP -PIC16F84A

Program takes 8-bit values from a table and

transfers them to the ping-pong LEDs with a

delay between each data transfer. The overall

effect is a display of randomly flashing LEDs

LED Arrays:
Seven-segment Displays

 By lighting different combinations of the seven segments, all numerical digits
can be displayed, as well as a surprising number of alphabetic characters.

 A decimal point is usually included, as shown.

 The problem arises that if each segment is illuminated by an LED, then 14
connections are required, and that is just for one digit.

 The common anode/common cathode connection requires less connections

7-Segment Display: Types
Common Cathode (CC), Common Anode (CA)

 In the common cathode display, all the cathode connections of the LED segments are joined
together to logic “0” or ground.

 The individual segments are illuminated by application of a “HIGH”, or logic “1” signal via a
current limiting resistor to forward bias the individual Anode terminals (a-g).

 In the common anode display, all the anode connections of the LED segments are joined
together to logic “1”.

 The individual segments are illuminated by applying a ground, logic “0” or “LOW” signal via a
suitable current limiting resistor to the Cathode of the particular segment (a-g).

7-Segment Display: Truth Table
(Common Cathode)

7-Segment Display: Connection
Connection to PORTB of PIC

7-Segment Display:
Lookup Table

Example

 Write a program
to show ‘5’ in 7-
segment display.

Example

 Write a program
to show ‘5’ in 7-
segment display.

BEGIN

MOVLW h’05’ ; W=h’05’ (test number)
CALL LOOKUP_TABLE
MOVWF PORTB ;PORTB=6D

LOOP
GOTO LOOP

LOOKUP_TABLE
 ADDWF PCL,F ;PCL=W(h’05’)
 retlw 0x3F
 retlw 0x06
 retlw 0x5B
 retlw 0x4F
 retlw 0x66
 retlw 0x6D
 retlw 0x7D
 retlw 0x07
 retlw 0x7F
 retlw 0x6F
END

Example

Problem 17:

 A program partially written and with the delay
subroutine can be found on the course webpage.
Complete the program which is for a 7-segment display
with common cathode to carry out following functions
together. But first draw the flow chart diagram.

 Display the number 9 on a 7-segment display at PORTB

 Wait for 1 second

 Subtract 7 from the displayed number and display the new
number if the button at RA2 is pressed. If the result is
negative, add 10 to the result and display the result of this
computation.

 go back to step 2.

7-Segment Display:
Two Displays in Parallel

 To produce a 4, 5 or 6 digit display, all the 7-segment displays are connected in parallel.

 The common line (the common-cathode line) is taken out separately and this line is taken low for a short
period of time to turn on the display.

 Each display is turned on at a rate above 100 times per second, and it will appear that all the displays are
turned on at the same time.

 As each display is turned on, the appropriate information must be delivered to it so that it will give the
correct reading.

 Up to 6 displays can be accessed like this without the brightness of each display being affected.

EXAMPLE:
Two Digit Display

loop
 bsf PORTA,0; display 1 is selected
 bcf PORTA,1;
 movlw .8;
 call common_anode; pin value for digit 8 in W
 movwf PORTB; write value to PORTB
 call delay_5ms; wait for 5 msec
 bcf PORTA,0;
 bsf PORTA,1; display 2 is selected
 movlw .9;
 call common_anode; pin value for digit 9 in W
 movwf PORTB; write value to PORTB
 call delay_5ms;
 goto loop; repeat the process

common_anode
 addwf PCL,1;
 retlw 0x3F
 retlw 0x06
 retlw 0x5B
 retlw 0x4F
 retlw 0x66
 retlw 0x6D
 retlw 0x7D
 retlw 0x07
 retlw 0x7F
 retlw 0x6F

delay_5ms; delay subroutine for 100ms delay
 movlw .250;
 movwf 0x0C; counter for outer loop
loop1; outer loop with N1=250 iterations: N1 = 250, k1 =
0
 movlw .5;
 movwf 0x0D; counter for inner loop;
loop2; inner loop with N2 = 98 iterations: N2 = 5, k2 = 0
 decfsz 0x0D,1; decrement counter2 (inner loop)
 goto loop2;
 nop;
 decfsz 0x0C,1; decrement couter1 (outer loop)
 goto loop1;
 return; return to delay_Nms subroutine

 end;

list p=16f84a;
 include "p16f84a.inc"
 __config _CP_OFF&_WDT_OFF&_XT_OSC;
N equ 0x0A; N = 10 -- delay = 10*100ms
 org 0;
main; Warning: the delay subroutine uses 0x0C, 0x0D -> we
cannot use these registers for the main program
 bsf STATUS,5;
 clrf TRISB; PORTB is output
 clrf TRISA; RA2 is input
 bcf STATUS,5;
 clrf PORTB;
 comf PORTB,1; all pins are 1 -> all segments are off
 clrf PORTA;

