Syllabus	Embedded Systems	Numbering Systems	Logic Operations						
	MECE336– N	Aicroprocessors I	1						
	Lecture 1 – Introdi	action and background							
_									
	Associate Prof. Dr.	Klaus Werner Schmidt							
	Department of Mechatronics Engineering – Çankaya University								
	Compulsory Course in Credit	Mechatronics Engineering s (3/2/4)							
	Course Webpage: http:	//MECE336.cankaya.edu.tr							
Klaus Schmidt MECE336 – Micro	processors I		Department						

Embedded Systems

Numbering Systems

Logic Operations

Content and Structure

Content

- Embedded Systems and Microcontrollers
- PIC 16F84A Architecture
- Assembly Programming Basics
- Input/output Usage
- Arithmetic Operations
- Timers and Interrupts, Sleep Mode and Watchdog Timer
- Programming Examples

Structure

- 3 lecture hours: Monday 15:20 17:10, Tuesday 9:20 10:10
- 2 Lab hours: Wednesday 13:20 15:10; Wednesday 15:20 17:10
- Office hours: Tuesday 10:20 11:00

Grading and Literature
Grading
 13 Laboratories (25%)
 1 Midterm Exam (25%)
• 1 Final Exam (35 %)
• 1 Project (15 %)
Literature
 Wilmhurst, Tim: "Designing Embedded Systems with PIC Microcontrollers: Principles and Applications", Elsevier Ltd., 2010 (ISBN: 9-78-1-85617-750-4) (Main Textbook)
 Mazidi, Muhammad Ali, McKinlay, Rolin D., Causay, Danny: "PIC Microcontrollers and Embedded Systems", Pearson International Education, 2008 (ISBN: 0-13-600902-6)
Klaus Schmidt Department MECE336 – Microprocessors I

Embedded Systems

Numbering Systems

Logic Operations

Embedded Systems: Basics

Embedded System Definition

A system whose principal function is not computational, but which is controlled by a computer embedded with it

- Embedded system has functionality different from only computation
- Some part/functionality of an embedded system needs computations
- A computing device is embedded in the embedded system

Usage of Embedded Systems

- Household, office, factories
- Cars, trains, other vehicles
- Hospitals
- Toys

Embedded Systems: Examples

Washing Machine

Microwave

Klaus Schmidt MECE336 – Microprocessors I

Syllabus

Embedded Systems

Numbering Systems

Logic Operations

Department

Embedded Systems: Examples

Autonomous Robot

Digital Watch

Klaus Schmidt MECE336 – Microprocessors I Department

Embedded Systems: Examples

Cell Phone

Digital Camera

Klaus Schmidt MECE336 – Microprocessors I

Syllabus

Embedded Systems

Numbering Systems

Logic Operations

Department

Embedded Systems: General Features

Overview

- CPU performs computations
- Program memory stores the instructions of the desired program
- Data memory stores application data values
- Input/output block for providing input data and reading output data
- Arrows represent data exchange

Klaus Schmidt MECE336 – Microprocessors I Embedded Systems

Syllabus

Embedded Systems: Description Central Processing Unit (CPU) Perform arithmetic or logical computations • Work through a series of instructions (program) • Instructions perform simple tasks • Combination of many instructions provide much computational power Input/Output Interface to the outside world • Sensors/actuators (Temperature sensor, button, motor, ...) • Human input devices (Keyboard, mouse, touchpad, ...) • Human output devices (Monitor, display, printer, ...) Klaus Schmidt Department MECE336 - Microprocessors I Syllabus Embedded Systems Numbering Systems Logic Operations Embedded Systems: Description

Program Memory

- Holds program to execute
- Needs to be permanent (also if there is no power)
- Program is ready to run as soon as power is applied

Data Memory

- Holds temporary data values (results of a computation, ...)
- Need not be permanent (can be erased if there is no power)

Data Paths

- I/O ⇔ CPU
- Data Memory \Leftrightarrow CPU
- Program Memory ⇔ CPU

Embedded Systems: Instructions

Instruction Set

- Set of instructions recognized by a CPU
- Programs are build up from instructions
- Different instruction sets depending on complexity

CISC: Complex Instruction Set Computer

- Many and sophisticated instructions with different levels of complexity
- \bullet Simple instructions: usually 1 byte \rightarrow quick execution
- \bullet Complex instructions: usually several bytes \rightarrow slow execution

RISC: Reduced Instruction Set Computer

- Simple instruction set for fast operation
- Each instruction is contained in a single binary word
- Instruction includes code and address data

Klaus Schmidt MECE336 – Microprocessors I

Syllabus

Embedded Systems

Numbering Systems

Logic Operations

Department

Embedded Systems: Memory Types

Volatile Memory

- Only works if device is powered and loses data if there is no power \rightarrow temporary data storage that can be used as data memory
- Usually simple semiconductor technology (easy to write)
- Denoted as Random Access Memory (RAM)

Non-volatile Memory

- Retain stored value even if device is not powered
 → permanent storage that can be used as program memory
- Non-volatile semiconductor technology, more difficult to write
- Denoted as Read-only Memory (ROM)

Klaus Schmidt
MECE336 – Microprocessors I

Embedded Systems

Numbering Systems

Logic Operations

Department

Embedded Systems: Memory Architectures

Description

- One address bus
- One data bus

 \rightarrow Each bus serves program memory, data memory and I/O

- Advantage: Flexible division of memory in program and data memory
- Disadvantage: Shared \Rightarrow only one component can access at a time
- Disadvantage: Same bus for all memory sizes (small/large words)

Numbering Systems

Logic Operations

Embedded Systems

Syllabus

• Current MPs also include some memory on CPU

Syllabus	Embedded Systems	Numbering Systems	Logic Operations		
Embedde	ed Systems: Microo	controllers (MCs)			
Necessity	of Microcontrollers				
Notice	e that computing power	can also be used for con	ntrol		
ightarrow Us applic	e microprocessors to co ation examples	ntrol products such as e	mbedded		
 Prope 	rties of such applicatior	IS			
• S • N • H	mall/moderate computing lo/less need for a develop las to work in harsh enviro	g power requirement at pos ed human interface onments (hot, cold, impact	sibly low price ;)		
	leed input/output interfac	e for sensors/actuators			
\Rightarrow Conneeded	mpact computing devic d	e including memory and	interfacing is		
\Rightarrow Mi	crocontrollers are develo	oped for this purpose			
Klaus Schmidt MECE336 – Microp	rocessors I		Department		
Syllabus	Embedded Systems	Numbering Systems	Logic Operations		
Embedde	d Systems: Microo	controller Organizat	tion		

Components

- Simple MP core
- Data/program memory
- Peripherals for interfacing
- Power, clock

Program

memory

Data

MC Examples

 Microchip (PIC), Atmel, Infinion, NXP, STMicroelectronics, Analog Devices, Texas Instruments

Power

ightarrow This lecture: PIC 16F84A microcontroller

Further

peripheral

Further

peripheral

Digital I/O

Analog I/O

Counters

& timers

Numbering Systems: Decimal, Binary, Hex	
Decimal System (Base 10)	
• 10 symbols: 0, 1, , 9	
Binary System (Base 2)	
• 2 symbols: 0, 1	
Hexadecimal System (Base 16)	
• 16 symbols: 0, 1, , 9, <i>A</i> , <i>B</i> , <i>C</i> , <i>D</i> , <i>E</i> , <i>F</i>	
Conversion from Decimal to Binary	
 Use weight 2ⁱ of the i-th bit in a binary number 	
Example	
bit 6 5 4 3 2 1 0	
number 1 0 0 1 1 0 1	
weight 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0}	
$\rightarrow 1001101_2 = 2^6 + 2^3 + 2^2 + 2^0 = 64 + 8 + 4 + 1 = 77_{10}$	
Klaus Schmidt	Department
MECE330 - Microprocessors I	

Embedded Systems

Numbering Systems

Logic Operations

Numbering Systems: Decimal, Binary, Hex

Conversion from Binary to Decimal

• Find coefficients for each weight 2^{*i*} of the *i*-th bit in a binary number

Example

• $45 = 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$ $\rightarrow 101101_2 = 45_{10}$

Conversion from Binary to Hexadecimal

• Note: 4 bits of a binary number correspond to a hexadecimal number \rightarrow Separate binary number into 4 bit pieces

Example

bit	12	11	10	9	8	7	6	5	4	3	2	1	0
number	1	0	1	0	0	1	1	0	0	0	1	1	0
weight	1	4			С			6					

```
\rightarrow 1010011000110_2 = 14 C6_{16}
```


Department